Growth and Yield Response of Superior Rice Varieties under Different Biofertilizer Rates in Lowland Rice Fields

Authors

  • Oky Dwi Purwanto Research Center for Food Crops, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor KM. 46, Cibinong, Bogor 16911, Indonesia https://orcid.org/0000-0003-1935-3247
  • Dedi Nugraha Indonesian Agency for Agriculture Engineering and Modernization, Ministry of Agriculture, Jl. Raya Ragunan No.29, Jati Padang, Pasar Minggu, Jakarta 12540, Indonesia https://orcid.org/0000-0003-3542-7170
  • Nia Romania Patriyawaty Indonesian Agency for Agriculture Engineering and Modernization, Ministry of Agriculture, Jl. Raya Ragunan No.29, Jati Padang, Pasar Minggu, Jakarta 12540, Indonesia https://orcid.org/0000-0002-8819-7746
  • I Putu Wardana Research Center for Economics of Industry, Services, and Trade, National Research and Innovation Agency, Gedung Sasana Widya Sarwono, Jl. Gatot Subroto No. 10, Jakarta 12710, Indonesia

DOI:

https://doi.org/10.29244/jtcs.12.03.627-638

Keywords:

beneficial microorganisms, grain yields, “Inpari 42”, panicle length, plant height

Abstract

Efforts to increase rice productivity through a sustainable and environmentally friendly approach are using biofertilizers. The biofertilizer contains beneficial microorganisms that play an essential role in promoting plant growth and increasing rice yield. This study aimed to investigate the potential of biofertilizers and evaluate the performance of superior rice varieties by applying several rates of biofertilizers in lowland rice fields for enhancing growth and yield. A split-plot design was laid out using a randomized complete block design with three replications. The main plot consisted of superior rice varieties, including “Inpari 30”, “Inpari 32”, “Inpari 36”, and “Inpari 42”, while the subplot involved biofertilizer rates of 0, 400, and 800 g.ha-1. The utilization of biofertilizer contributed to the improvement of seedling height and root length. Applying biofertilizer increased plant height, panicle length, the number of grains per panicle, the number of filled grains per panicle, and the percentage of f illed grains, while decreasing the number of unfilled grains per panicle. The application of biofertilizer at a rate of 400 g.ha-1 significantly improved grain yields for “Inpari 30”, “Inpari 32”, and “Inpari 36”. However, “Inpari 42” required a higher biofertilizer rate of 800 g.ha-1 to produce high grain yields. The grain yield of superior rice varieties increased by 10%-21.6% with the application of biofertilizer. The findings of this study may provide recommendations for applying biofertilizers to enhance grain yields of several superior rice varieties in specific lowland rice field agroecosystems.

References

Al Ali, H. A., Khalifa, A., and Almalki, M. (2021). Plant growth-promoting rhizobacteria from Ocimum basilicum improve growth of Phaseolus vulgaris and Abelmoschus esculentus. South African Journal of Botany 139, 200–209. DOI: https://doi.org/10.1016/j.sajb.2021.02.019.

Anwar, M. P., Juraimi, A. S., Man, A., Puteh, A., Selamat, A., and Begum, M. (2010). Weed suppressive ability of rice (Oryza sativa L.) germplasm under aerobic soil conditions. Australian Journal of Crop Science 4, 706–717.

Arafah. (2017). The effect of Agrimeth biodiversity on growth and rice product. Jurnal Agrisistem 13, 26–30. Barea, J. M. (2015). Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. Journal of Soil Science and Plant Nutrition 15, 261–282. DOI: https://doi.org/10.4067/S0718-95162015005000021.

Cai, F., Chen, W., Wei, Z., Pang, G., Li, R., Ran, W., and Shen, Q. (2014). Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora. Plant and Soil 388, 337–350. DOI: https://doi.org/10.1007/s11104-014-2326-z.

Chaudhary, P., Singh, S., Chaudhary, A., Sharma, A., and Kumar, G. (2022). Overview of biofertilizers in crop production and stress management for sustainable agriculture. Frontiers in Plant Science 13, 930340. DOI: https://doi.org/10.3389/fpls.2022.930340.

Choudhary, R. S., and Yadav, N. K. (2021). Biofertilizers (microbial inoculants). Just Agriculture 1, 1–10.

Fahde, S., Boughribil, S., Sijilmassi, B., and Amri, A. (2023). Rhizobia: A promising source of plant growth-promoting molecules and their non legume interactions: Examining applications and mechanisms. Agriculture 13, 1279. DOI: https://doi.org/10.3390/agriculture13071279.

Grossi, C. E. M., Fantino, E., Serral, F., Zawoznik, M. S., Fernandez Do Porto, D. A., and Ulloa, R. M. (2020). Methylobacterium sp. 2A is a plant growth-promoting rhizobacteria that has the potential to improve potato crop yield under adverse conditions. Frontiers in Plant Science 11, 71. DOI: https://doi.org/10.3389/fpls.2020.00071.

Husna, M., Sugiyanta, and Pratiwi, E. (2021). Response of rice yield and soil nutrients to phosphate-solubilizing bacteria and nitrogen f ixers. Agrotechnology Research Journal 5, 91–96. DOI: https://doi.org/10.20961/agrotechresj.v5i2.51533.

Husnain, Nursyamsi, D., and Syakir, M. (2016). Fertilizer technology in supporting Jarwo Super. Jurnal Sumberdaya Lahan 10, 1–10.

Hussain, A., and Hasnain, S. (2009). Cytokinin production by some bacteria: Its impact on cell division in cucumber cotyledons. African Journal of Microbiology Research 3, 704–712.

Ikhwani, Arsana, I. G. K. D., Arief, R. W., Asnawi, R., Sudaryono, T., and Mejaya, M. J. (2022). Rice growth and yield response to biofertilizer application on the Latosol paddy field of Indonesia. Applied Ecology and Environmental Research 20, 3671–3682. DOI: https://doi.org/10.15666/aeer/2004_36713682.

Jirakkakul, J., Khoiri, A. N., Duangfoo, T., Dulsawat, S., Sutheeworapong, S., Petsong, K., Wattanachaisaereekul, S., Paenkaew, P., Tachaleat, A., Cheevadhanarak, S., and Prommeenate, P. (2023). Insights into the genome of Methylobacterium sp. NMS14P, a novel bacterium for growth promotion of maize, chili, and sugarcane. PLOS ONE 18, e0281505. DOI: https://doi.org/10.1371/journal.pone.0281505.

Jones, D. L., Cross, P., Withers, P. J. A., DeLuca, T. H., Robinson, D. A., Quilliam, R. S., Harris, I. M., Chadwick, D. R., and Edwards-Jones, G. (2013). REVIEW: Nutrient stripping: the global disparity between food security and soil nutrient stocks. Journal of Applied Ecology 50, 851–862. DOI: https://doi.org/10.1111/1365 2664.12089.

Jorge, G. L., Kisiala, A., Morrison, E., Aoki, M., Nogueira, A. P. O., and Emery, R. J. N. (2019). Endosymbiotic Methylobacterium oryzae mitigates the impact of limited water availability in lentil (Lens culinaris Medik.) by increasing plant cytokinin levels. Environmental and Experimental Botany 162, 525–540. DOI: https://doi.org/10.1016/j.envexpbot.2019.03.028.

Khan, H. I. (2018). Appraisal of biofertilizers in rice: to supplement inorganic chemical fertilizers. Rice Science 25, 357–362. DOI: https://doi.org/10.1016/j.rsci.2018.10.006.

Kozak, M., Krzanowski, W., and Tartanus, M. (2012). Use of the correlation coefficient in agricultural sciences: problems, pitfalls, and how to deal with them. Anais Da Academia Brasileira de Ciências 84, 1147–1156. DOI: https://doi.org/10.1590/S0001-37652012000400029.

Liu, X., Wang, H., Zhou, J., Hu, F., Zhu, D., Chen, Z., and Liu, Y. (2016). Effect of N fertilization pattern on rice yield, N use efficiency, and fertilizer-N fate in the Yangtze River Basin, China. PLOS ONE 11, e0166002. DOI: https://doi.org/10.1371/journal.pone.0166002.

Martínez-Alcántara, B., Martínez-Cuenca, M.-R., Bermejo, A., Legaz, F., and Quiñones, A. (2016). Organic fertilizers for sustainable agriculture: Nutrient uptake of organic versus mineral fertilizers in citrus trees. PLOS ONE 11, e0161619. DOI: https://doi.org/10.1371/journal.pone.0161619.

Moe, K., Moh, S. M., Htwe, A. Z., Kajihara, Y., and Yamakawa, T. (2019). Effects of integrated organic and inorganic fertilizers on yield and growth parameters of rice varieties. Rice Science 26, 309–318. DOI: https://doi.org/10.1016/j.rsci.2019.08.005.

Molla, A. H., Manjurul Haque, Md., Amdadul Haque, Md., and Ilias, G. N. M. (2012). Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agricultural Research 1, 265–272. DOI: https://doi.org/10.1007/s40003-012-0025-7.

Moreno, J. L., Ondoño, S., Torres, I., and Bastida, F. (2017). Compost, leonardite, and zeolite impacts on soil microbial community under barley crops. Journal of Soil Science and Plant Nutrition 17, 214–230. DOI: https://doi.org/10.4067/S0718-95162017005000017.

Noraida, M. R., and Hisyamuddin, M. R. A. (2021). The effect of different rates of biofertilizer on the growth performance and yield of rice. IOP Conference Series: Earth and Environmental Science 757, 012050. DOI: https://doi.org/10.1088/1755-1315/757/1/012050.

Nosheen, S., Ajmal, I., and Song, Y. (2021). Microbes as biofertilizers: a potential approach for sustainable crop production. Sustainability 13, 1868. DOI: https://doi.org/10.3390/su13041868.

Nurkhaida, R., Hamdani, A., Suriadi, A., and Heryani, N. (2021). Increasing rice productivity and profitability through irrigation water management and bio-fertilizer in West Nusa Tenggara. E3S Web of Conferences 306, 04012. DOI: https://doi.org/10.1051/e3sconf/202130604012.

O’Callaghan, M., Ballard, R. A., and Wright, D. (2022). Soil microbial inoculants for sustainable agriculture: Limitations and opportunities. Soil Use and Management 38, 1340–1369. DOI: https://doi.org/10.1111/sum.12811.

Oladele, S., and Awodun, M. (2014). Response of lowland rice to biofertilizer inoculation and their effects on growth and yield in Southwestern Nigeria. Journal of Agriculture and Environmental Sciences 3, 371–390.

Olanrewaju, O. S., Glick, B. R., and Babalola, O. O. (2017). Mechanisms of action of plant growth-promoting bacteria. World Journal of Microbiology and Biotechnology 33, 197. DOI: https://doi.org/10.1007/s11274-017-2364-9.

Purwani, J., Pratiwi, E., Hastuti, R. D., Salma, S., and Wardana, I. P. (2018). Effectiveness of N, P, K fertilizer by using Agrimeth biofertilizer on rice yield of variety Inpari 10 in lowland of Inceptisol Bogor. In “Prosiding Seminar Nasional 2017” (L. M. Zarwazi, N. Agustiani, S. Margaret, Z. Susanti, Rahmini, Suprihanto, B. Nuryanto, N. Usyati, N. A. Herawati, Satoto, Y. Nugraha, I. A. Rumanti, U. Susanto, and A. Hairmansis, eds.), pp 361–372. Sukamandi, Indonesia. Indonesian Center for Rice Research.

Purwanto, O. D., Palobo, F., and Tirajoh, S. (2020). Growth and yield of superior rice (Oryza sativa L.) varieties on different planting systems in Papua, Indonesia. SVU-International Journal of Agricultural Sciences 2, 242–255. DOI: https://doi.org/10.21608/svuijas.2020.40825.1031.

Rashid, M. I., Mujawar, L. H., Shahzad, T., Almeelbi, T., Ismail, I. M. I., and Oves, M. (2016). Bacteria and fungi can contribute to nutrient bioavailability and aggregate formation in degraded soils. Microbiological Research 183, 26–41. DOI: https://doi.org/10.1016/j.micres.2015.11.007.

Rodríguez, H., and Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17, 319–339. DOI: https://doi.org/10.1016/S0734-9750(99)00014-2.

Roy, M. L., and Srivastava, R. C. (2011). Plant growth promotion potential of Azotobacter chroococcum on growth, biomass, leaf area index, and yield parameters of Aman rice in Tripura. Indian Journal of Agricultural Research 45, 52–58.

Saleh, M. M., Salem, K. F. M., and Elabd, A. B. (2020). Definition of selection criterion using correlation and path coefficient analysis in rice (Oryza sativa L.) genotypes. Bulletin of the National Research Centre 44, 143. DOI: https://doi.org/10.1186/s42269-020-00403-y.

Samijan, Minarsih, S., Jauhari, S., Basuki, S., Susila, A., Nurwahyuni, E., Hindarwati, Y., Supriyo, A., and Aristya, V. E. (2023). Revitalizing sub-optimal drylands: Exploring the role of biofertilizers. Open Agriculture 8, 20220214. DOI: https://doi.org/10.1515/opag-2022-0214.

Sammauria, R., Kumawat, S., Kumawat, P., Singh, J., and Jatwa, T. K. (2020). Microbial inoculants: potential tool for sustainability of agricultural production systems. Archives of Microbiology 202, 677–693. DOI: https://doi.org/10.1007/s00203-019-01795-w.

Sarker, D., Anwar, M. P., Uddin, M. R., and Hossen, K. (2018). Exploring the possibility of using Agroplus biodecomposer for boosting rice productivity under Bangladeshi conditions. Fundamental and Applied Agriculture 3, 372 381. DOI: https://doi.org/10.5455/faa.284983.

Schütz, L., Gattinger, A., Meier, M., Müller, A., Boller, T., Mäder, P., and Mathimaran, N. (2018). Improving crop yield and nutrient use efficiency via biofertilization—A global meta-analysis. Frontiers in Plant Science 8, 2204. DOI: https://doi.org/10.3389/fpls.2017.02204.

Seenivasagan, R., and Babalola, O. O. (2021). Utilization of microbial consortia as biofertilizers and biopesticides for the production of feasible agricultural product. Biology 10, 1111. DOI: https://doi.org/10.3390/biology10111111.

Sembiring, H., Patriyawaty, N. R., Nugraha, D., Ramadhan, R. P., Purwanto, O. D., Erythrina, Subekti, N. A., and Susilowati. (2021). Evaluating the implementation of fertilizer based decision support systems to increase yield productivity and efficiency of irrigated rice farming in West Java. IOP Conference Series: Earth and Environmental Science 911, 012039. DOI: https://doi.org/10.1088/1755-1315/911/1/012039.

Shahwar, D., Mushtaq, Z., Mushtaq, H., Alqarawi, A. A., Park, Y., Alshahrani, T. S., and Faizan, S. (2023). Role of microbial inoculants as biofertilizers for improving crop productivity: A review. Heliyon 9, e16134. DOI: https://doi.org/10.1016/j.heliyon.2023.e16134.

Singh, R. K., Kumar, P., Prasad, B., and Singh, S. B. (2015). Effect of biofertilizers on growth, yield, and economics of rice (Oryza sativa L.). International Research Journal of Agricultural Economics and Statistics 6, 386–391. DOI: https://doi.org/10.15740/HAS/IRJAES/6.2/386-391.

Sokolova, M. G., Akimova, G. P., and Vaishlya, O. B. (2011). Effect of phytohormones synthesized by rhizosphere bacteria on plants. Applied Biochemistry and Microbiology 47, 274–278. DOI: https://doi.org/10.1134/S0003683811030148.

Yuliyasari, T., Mansyur, and Sanjaya, A. (2023). Calculation of the cost of rice production in Farmer Groups Source of Fortune in Sidomukti Village, Muara Kaman District, Kutai Kartanegara Regency. Journal of Indonesian Social Science 4, 261–273.

Downloads

Published

2025-10-24

How to Cite

Purwanto, O. D., Nugraha, D., Patriyawaty, N. R., & Wardana, I. P. (2025). Growth and Yield Response of Superior Rice Varieties under Different Biofertilizer Rates in Lowland Rice Fields . Journal of Tropical Crop Science, 12(03), 627–638. https://doi.org/10.29244/jtcs.12.03.627-638