Inducing Drought Stress Tolerance during Germination by Micronutrient Seed Priming and Coating of Maize (Zea mays L.)

Authors

DOI:

https://doi.org/10.29244/jtcs.12.03.492-505

Keywords:

abiotic stress, film coating, seed enhancement treatment, seed quality

Abstract

Drought is a significant abiotic stress that affects the germination of many crops, including maize. Improvement in seed quality and tolerance to drought stress can be induced through seed priming and coating. This research aimed to study the effect of priming and coating on maize seed germination under drought conditions. The experiment was performed in a randomized complete block design with a split plot arrangement and four replications. The main plot was drought stress level: control, and 10% PEG. The subplot was seed enhancement treatments, which consisted of untreated, hydropriming, osmopriming, priming with 6 mM Si, 0.075 mM Se + 10 mM Zn, 6 mM Si + 0.075 Se + 10 mM Zn, 0.8 mM melatonin, seed coating 1% NaAlg, P9: seed coating + 0.732 g Si.kg-1 seed, P10: seed coating + 0.014 g Se + 2.875 g Zn.kg-1 seed, P11: seed coating + 0.732 g Si + 0.014 g Se + 2.875 g Zn.kg-1 seed, and P12: seed coating + 0.186 g melatonin.kg-1 seed. The result showed that seed priming 0.075 mM Se + 10 mM Zn, priming 6 mM Si + 0.075 mM Se + 10 mM Zn, and seed coating + 0.732 g Si + 0.014 g Se + 2.875 g Zn.kg-1 seed improved maize seed germination under drought stress based on germination percentage, speed of germination, root dry weight, seedling dry weight, and seedling growth rate. Seed priming or coating with micronutrients such as silicon, selenium, and zinc could serve as an effective treatment to enhance germination of maize under drought conditions.

References

Afzal, I., Javed, T., Amirkhani, M., and Taylor, A.G. (2020). Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture 10, 1–20. DOI: https://doi.org/10.3390/agriculture10110526.

Ahmad, A., Tola, E.K., Alshahrani, T.S., and Seleiman, M.F. (2023). Enhancement of morphological and physiological performance of Zea mays L. under saline stress using ZnO nanoparticles and 24-Epibrassinolide seed priming. Agronomy 13, 1-24. DOI: https://doi.org/10.3390/agronomy13030771.

Al-Shammeryi, W.H.M. (2024). Effects of seed coating with (titanium dioxide and selenium) nanoparticles on fenugreek (Trigonella foenum graecum L.) plant growth and antioxidant activity. Advancements in Life Sciences 11, 810-814. DOI: http://dx.doi.org/10.62940/als.v11i4.2776.

Athoillah, I., Sibarani, R.M., and Doloksaribu, D.E. (2017). Analisis spasial pengaruh kejadian el nino kuat tahun. Jurnal Sains dan Teknologi Modifikasi Cuaca 18, 33–41. DOI: https://doi.org/10.29122/jstmc.v18i1.2140.

Avelar, S.A.G., Sousa, F.V., Fiss, G., Baudet, L., and Peske, S.T. (2012). The use of film coating on the performance of treated corn seed. Revista Brasileira de Sementes 34, 186–192. DOI: https://doi.org/10.1590/s010131222012000200001.

Badr, A., El-shazly, H.H., Tarawneh, R.A., and Börner, A. (2020). Screening for drought tolerance in maize (Zea mays L.) germplasm using germination and seedling traits under simulated drought conditions. Plants 9, 1–23. DOI: https://doi.org/10.3390/plants9050565.

Basit, A., Hussain, S., Abid, M., Zafar-ul-Hye, M., and Ahmed, N. (2020). Zinc and potassium priming of maize (Zea mays L.) seeds for salt-affected soils. Journal of Plant Nutrition 44, 130–141. DOI: https://doi.org/10.1080/01904167.2020.1799005.

Behboud, R., Moradi, A., and Farajee, H. (2021). Film coating with sodium alginate improves seed germination of sweet corn (Zea mays var. Saccharata) under osmotic stress conditions. Journal of Plant Process and Function 9, 33 42. DOI: https://jispp.iut.ac.ir/browse.php?a_code=A-10-717-6&slc_lang=en&sid=1.

Behboud, R., Moradi, A., Piri, R., Dedicova, B., Fazeli-Nasab, B., and Ghorbanpour, M. (2024). Sweet corn (Zea mays L.) seed performance enhanced under drought stress by chitosan and minerals coating. BMC Plant Biology 24, 1-17. DOI: https://doi.org/10.1186/s12870-02405704-2.

Bukhari, B., Sabaruddin, Z., Surfadi, S., and Syafruddin, S. (2021). Drought test resistance of maize varieties through PEG 6000. IOP Conference Series: Earth and Environmental Science 644, 012040. DOI: https://doi.org/10.1088/1755-1315/644/1/012040.

Cai, H., Li, J., Li, J., and Teng, H. (2025). Melatonin— Angel of plant growth regulation and protection. Advanced Agrochem 4, 114-122. DOI: https://doi.org/10.1016/j.aac.2025.01.001.

Chang, L., Xu, L., Liu, Y., and Qiu, D. (2021). Superabsorbent polymers used for agricultural water retention. Polymer Testing 94, 1-7. DOI: https://doi.org/10.1016/j.polymertesting.2020.107021.

Chen, K., and Arora, R. (2013). Priming memory invokes seed stress-tolerance. Environmental and Experimental Botany 94, 33–45. DOI: https://doi.org/10.1016/j.envexpbot.2012.03.005.

Choukri, M., Abouabdillah, A., Bouabid, R., Abd Elkader, O.H., Pacioglu, O., Boufahja, F., and Bourioug, M. (2022). Zn application through seed priming improves productivity and grain nutritional quality of silage corn. Saudi Journal of Biological Sciences 29, 1-9. DOI: https://doi.org/10.1016/j.sjbs.2022.103456.

Efendi, R., Sudarsono, Ilyas, S., and Sulistiono, E. (2009). Seleksi dini toleransi genotipe jagung terhadap kekeringan. Penelitian Pertanian Tanaman Pangan 28, 63–68.

Ejaz, S., Fahad, S., Anjum, M. A., Nawaz, A., Naz, S., Hussain, S., and Ahmad, S. (2020). Role of osmolytes in the mechanisms of antioxidant defense of plants. In "Sustainable Agriculture Reviews". (E. Lichtfouse, eds.), pp. 95-117. Springer.

Farman, M., Nawaz, F., Majeed, S., Javeed, H.M.R., Ahsan, M., Ahmad, K.S., Aurangzaib, M., Bukhari, M.A., Shehzad, M.A., and Hussain, M.B. (2022). Silicon seed priming combined with foliar spray of sulfur regulates photosynthetic and antioxidant systems to confer drought tolerance in maize (Zea mays L.). Silicon 14, 7901–7917. DOI: https://doi. org/10.1007/s12633-021-01505-6.

Fatikhasari, Z., Lailaty, I.Q., Sartika, D., and Ubaidi, M.A. (2022). Viabilitas dan vigor benih kacang tanah (Arachis hypogaea L.), kacang hijau (Vigna radiata (L.) R. Wilczek), dan jagung (Zea mays L.) pada temperatur dan tekanan osmotik berbeda. Jurnal Ilmu Pertanian Indonesia 27, 7-17. DOI: https://doi.org/10.18343/jipi.27.1.7.

Fertahi, S., Ilsouk, M., Zeroual, Y., Oukarroum, A., and Barakat, A. (2021). Recent trends in organic coating based on biopolymers and biomass for controlled and slow-release fertilizers. Journal of Controlled Release 330, 341–361. DOI: https://doi.org/10.1016/j.jconrel.2020.12.026.

Finch-Savage, W.E., and Bassel, G.W. (2016). Seed vigour and crop establishment: Extending performance beyond adaptation. Journal of Experimental Botany 67, 567–591. DOI: https://doi.org/10.1093/jxb/erv490.

Ganguly, R., Sarkar, A., Dasgupta, D., Acharya, K., Keswani, C., Popova, V., Minkina, T., Maksimov, A. Y., and Chakraborty, N. (2022). Unravelling the efficient applications of zinc and selenium for mitigation of abiotic stresses in plants. Agriculture 12, 1-18. DOI: https://doi.org/10.3390/agriculture12101551.

Golezani, K.G, and Dalil, B. (2018). Effects of seed vigor on growth and grain yield of maize. Plant Breeding and Seed Science 70, 81–90. DOI: https://doi.org/10.1515/plass-2015-0015.

Goswami, A.J. 2019. Seed priming: A technique to improve seed performance. International Journal of Chemical Studies 7, 966-971. Hamama, H., and Murniati, E. (2010). The effect of ascorbic acid treatment on viability and vigor maize (Zea mays L.) seedling under drought stress. Hayati Journal of Biosciences 17, 105 109. DOI: https://doi.org/10.4308/hjb.17.3.105.

Hameed, A., Farooq, T., Hameed, A., and Sheikh, M. A. (2021). Silicon-mediated priming induces acclimation to mild water-deficit stress by altering physio-biochemical attributes in wheat plants. Frontiers in Plant Science 12, 1–13. DOI: https://doi.org/10.3389/fpls.2021.625541.

Hassan, M.U., Aamer, M., Chattha, M.U., Haiying, T., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., Liu, Y., and Guoqin, H. (2020). The critical role of zinc in plants facing the drought stress. Agriculture 10, 1–20. DOI: https://doi.org/10.3390/agriculture10090396.

Ibrahim E.A.A. (2019). Fundamental processes involved in seed priming. In "Priming and Pretreatment of Seeds and Seedlings: Implication in Plant Stress Tolerance". (M. Hasanuzzaman, V. Fotopoulos, eds.), pp. 63 116. Springer.

Idrees, K., Aziz, A., Naeem, M., Azhar, M.F., Farooq, S., and Hussain, M. (2024). Combined application of zinc and silicon improved growth, gas exchange traits, and productivity of maize (Zea mays L.) under water stress. Silicon 16, 831–841. DOI: https://doi.org/10.1007/s12633 023-02732-9.

Ilyas, S. (2012). "Ilmu dan Teknologi Benih: Teori dan Hasil-Hasil Penelitian". pp 93-94. IPB Press.

Irawan, B. (2016). Fenomena anomali iklim el nino dan la nina: kecenderungan jangka panjang dan pengaruhnya terhadap produksi pangan. Forum Penelitian Agro Ekonomi 24, 28-45. DOI: https://doi.org/10.21082/fae.v24n1.2006.28-45.

[ISTA] International Seed Testing Association. (1995). "Handbook of Vigour Test Methods 3rd Edition". pp 95-96. The International Seed Testing Association.

[ISTA] International Seed Testing Association. (2018). "International Rules for Seed Testing Edition 2018". pp 111-270. International Seed Testing Association.

Jarrar, H., and Keblawy, A.E. (2022). Seed enhancement technologies promote direct seeding and overcoming biotic and abiotic barriers in degraded dryland ecosystem. Environmental Sciences Proceedings 16, 1-4. DOI: https://doi.org/10.3390/environsciproc2022016001.

Jiang, X., Li, H., and Song, X. (2016). Seed priming with melatonin effects on seed germination and seedling growth in maize under salinity stress. Pakistan Journal of Botany 48, 1345-1353. DOI: https://www.pakbs.org/pjbot/PDFs/48(4)/04.pdf.

Jin, Z., Qing-wu, X., Jessup, K.E., Xiao-bo, H., Bao zhen, H., Marek, T.H., Wenwei, X., Evett, S.R., O’Shaughnessy, S.A., and Brauer, D.K. (2018). Shoot and root traits in drought-tolerant maize (Zea mays L.) hybrids. Journal of Integrative Agriculture 17, 1093–1105. DOI: https://doi.org/10.1016/S2095-3119(17)61869-0.

John, S.S, Bharathi, A., Natesan, P., and Raja, K. (2005). Seed film coating technology for maximizing the growth and productivity of maize. Karnataka Journal of Agricultural Science 18, 349–356. DOI: http://14.139.155.167/test5/index.php/kjas/article/view/425.

[Kementan] Kementerian Pertanian. (2024). "Laporan Kinerja Kementerian Pertanian Tahun 2023". pp 33-34. Kementerian Pertanian.

Kolesnikov, M., Gerasko, T., Paschenko, Y., Pokoptseva, L., Onyschenko, O., and Kolesnikova, A. (2023). Effect of water deficit on maize seeds (Zea mays L.) during germination. Agronomy Research 21, 156–174. DOI: https://doi.org/10.15159/AR.23.016.

Kumdee, O., Molla, M.S.H., Kanavittaya, K., Romkaew, J., Sarobol, E., and Nakasathien, S. (2023). Morpho-physiological and biochemical responses of maize hybrids under recurrent water stress at the early vegetative stage. Agriculture 13, 1-30. DOI: https://doi.org/10.3390/agriculture13091795.

Kunjammal, P., and Sukumar, J. (2019). Effect of different seed treatment on grain yield of maize (Zea mays L.) under drought stress conditions. Madras Agricultural Journal 106, 384-387. DOI: https://doi.org/10.29321/maj.2019.000279.

Lanza, M.G.D.B., and Reis, A.R.D. (2021). Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiology and Biochemistry 164, 27–43. DOI: https://doi.org/10.1016/j.plaphy.2021.04.026.

Li, X., Liu, J., Zhang, C., Liu, Z., Guo, X., Li, S., Li, H., Liu, K., Li, K., and Ding, M. (2025). Melatonin promotes yield increase in wheat by regulating its antioxidant system and growth under drought stress. Biology 14, 1-15. DOI: https://doi.org/10.3390/biology14010094.

Ma, L., Wei, J., Han, G., Sun, X., and Yang, X. (2024). Seed osmopriming with polyethylene glycol (PEG) enhances seed germination and seedling physiological traits of Coronilla varia L. under water stress. PLoS ONE 19, 1-21. DOI: https://doi.org/10.1371/journal.pone.0303145.

Magar, M.M., Parajuli, A., Sah, B.P., Shrestha, J., Sakh, B.M., Koirala, K.B., and Dhital, S.P. (2019). Effect of PEG-induced drought stress on germination and seedling traits of maize (Zea mays L.) lines. Turkish Journal of Agricultural and Natural Sciences 6, 196–205. DOI: https://doi.org/10.30910/turkjans.432957.

Maksimovic, T., Janjic, N., and Lubarda, B. (2021). Effect of drought-induced stress on seed germination and seedling growth of Zea mays L. Indian Journal of Agricultural Research 55, 197-201. DOI: https://doi.org/10.18805/IJARe.A-602.

Maphalaphathwa, M., and Nciizah, A.D. (2025). Nutrient seed priming effects on water stress tolerance and nutrient uptake of chilies (Capsicum annum L.). Agronomy 15, 1-19. DOI: https://doi.org/10.3390/agronomy15040930.

Marthandan, V., Geetha, R., Kumutha, K., Renganathan, V.G., Karthikeyan, A., and Ramalingam, J. (2020). Seed priming: a feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences 21, 1–23. DOI: https://doi.org/10.3390/ijms21218258.

Matlok, N., Piechowiak, T., Królikowski, K., and Balawejder, M. (2022). Mechanism of reduction of drought-induced oxidative stress in maize plants by fertilizer seed coating. Agriculture 12, 1-12. DOI: https://doi.org/10.3390/agriculture12050662 .

Mohammed, M.M.A., and Pekşen, E. (2020). Influence of Zn seed priming and coating on germination and seedling growth in wheat. Anadolu Journal of Agricultural Sciences 35, 259-267. DOI: https://doi.org/10.7161/omuanajas.745891.

Mohammed, M.M.A., and Peksen, E. (2021). Impact of different zinc application strategies on yield, yield component, and chlorophyll content of wheat under drought and zinc-deficiency stress conditions. Journal of Plant Nutrition 44, 1468–1485. DOI: https://doi.org/10.1080/01904167.2020.1862190.

Morales-Hernández, L.Y., Márquez-Quiroz, C., Aguilar-Sánchez, N.C., Alvarado-López, C.J., de la Cruz-Lázaro, E., and Morales-Morales, A.E. (2024). Selenium treatment enhances the germination and growth of corn seedlings. Revista Bio Ciencias 11, 1-21. DOI: https://doi.org/10.15741/revbio.11.e1618.

Muhammad, I., Yang, L., Ahmad, S., Farooq, S., Khan, A., Muhammad, N., Ullah, S., Adnan, M., Ali, S., Liang, Q.P., and Zhou, X.B. (2023). Melatonin-priming enhances maize seedling drought tolerance by regulating the antioxidant defense system. Plant Physiology 191, 2301 2315. DOI: https://doi.org/10.1093/plphys/kiad027.

Nafarrate-Ramos, D., Trejo-Téllez, L.I., Peralta Sánchez, M.G., Tejeda-Sartorius, O., Alcántar González, G., & Gómez-Merino, F.C. (2022). Silicon increases seed weight and initial seedling growth of maize under non-stress conditions, and improves the index of velocity of germination under salt stress conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 50, 1–14. DOI: https://doi.org/10.15835/nbha50412948.

Nawaz, F., Zulfiqar, B., Ahmad, K.S., Majeed, S., Shehzad, M.A., Javeed, H.M.R., Tahir, M.N., and Ahsan, M. (2021). Pretreatment with selenium and zinc modulates physiological indices and antioxidant machinery to improve drought tolerance in maize (Zea mays L.). South African Journal of Botany 138, 209–216. DOI: https://doi.org/10.1016/j.sajb.2020.12.016.

Nciizah, A.D., Rapetsoa, M.C., Wakindiki, I.I., and Zerizghy, M.G. (2020). Micronutrient seed priming improves maize (Zea mays) early seedling growth in a micronutrient deficient soil. Heliyon 6, 1-10. DOI: https://doi.org/10.1016/j.heliyon.2020.e04766.

Palupi, T., and Asnawati. (2017). Efek Cekaman Kekeringan Terhadap Beberapa Varietas Jagung In "Seminar Nasional Penerapan Ilmu Pengetahuan Dan Teknologi", pp 207-212, Pontianak, Indonesia.

Paravar, A., Piri, R., Balouchi, H., and Ma, Y. (2023). Microbial seed coating: An attractive tool for sustainable agriculture. Biotechnology Reports 37, 1-15. DOI: https://doi.org/10.1016/j.btre.2023.e00781.

Parveen, A., Liu, W., Hussain, S., Asghar, J., Perveen, S., and Xiong, Y. (2019). Silicon priming regulates morpho-physiological growth and oxidative metabolism in maize under drought stress. Plants 8, 1-14. DOI: https://doi.org/10.3390/plants8100431.

Prajapati, R.K., Dixit, A.K., and Pathak, G.C. (2025). Role of zinc in mitigating drought stress and enhancing resilience in maize (Zea mays L.). Journal of Applied Biosciences 51, 47-54.

Qadir, A., Kusumawardana, A., Ritawati, and Suwarno, P.M. (2023). Pengaruh tekanan potensial air terhadap kemunculan radikula pada benih jagung (Zea mays). Jurnal Sains Terapan : Wahana Informasi dan Alih Teknologi Pertanian 13, 7-15. DOI: https://doi.org/10.29244/jstsv.13.2.7-15.

Queiroz, M.S., Oliveira, C.E.S., Steiner, F., Zuffo, A.M., Zoz, T., Vendruscolo, E.P., Silva, M.V., Mello, B.F.F.R., Cabral, R.C., and Menis, F.T. (2019). Drought stresses on seed germination and early growth of maize and sorghum. Journal of Agricultural Science 11, 310-318. DOI: https://doi.org/10.5539/jas.v11n2p310.

Radic, V., Balalic, I., Cvejic, S., and Jocic, S. (2018). Drought effect on maize seedling and development. Journal Ratarstvo i Povrtarstvo 55, 135-138.

Rashidifard, A., Chorom, M., Masir, M.N., and Roshanfekr, H. (2022). Effect of seed priming by humic acid and zinc on some morpho-physiological traits of maize (Zea mays L.) seedlings under saline conditions. Environmental Stresses in Crop Sciences 14, 1115-1125. DOI: http://dx.doi.org/10.22077/escs.2020.3412.1856.

Rehman, A., Qamar, R., Rehman, A., Wasaya, A., Farooq, O., Sarwar, N., Iqbal, M.M., and Ahmad, S. (2020). Silicon coating on maize seed mitigates saline stress in Yermosols of Southern Punjab. Silicon 13, 4293–4303. DOI: https://doi.org/10.1007/s12633-020-00737-2.

Rhaman, M.S., Rauf, F., Tania, S.S., and Khatun, M. (2020). Seed priming methods: application in field crops and future perspectives. Asian Journal of Research in Crop Science 5, 8–19. DOI: https://doi.org/10.9734/ajrcs/2020/v5i230091.

Rida, S., Maafi, O., López-malvar, A., Revilla, P., Riache, M., and Djemel, A. (2021). Genetics of germination and seedling traits under drought stress in a magic population of maize. Plants 10, 1–17. DOI: https://doi.org/10.3390/plants10091786.

Saha, D., Choyal, P., Mishra, U.N., Dey, P., Bose, B., Pratibha, M.D., Gupta, N.K., Mehta, B.K., Kumar, P., Pandey, S., Chauhan, J., and Singhal, R.K. (2022). Drought stress responses and inducing tolerance by seed priming approach in plants. Plant Stress 4, 1-14. DOI: https://doi.org/10.1016/j.stress.2022.100066.

Sarangi, A., Samal, N., Das, M., and Nayak, G.C. (2024). Reactive oxygen species and its effect on germination of seeds. Multidisciplinary Reviews 7, 1-22. DOI: https://doi.org/10.31893/multirev.2024001.

Shabaz, M., Ali, H., Sajjad, M., and Ahsan Nawaz Shah, S. (2015). Effect of seed coating with boron and zinc of zea mays for various yield traits. Journal of Agricultural & Environmental Science, 15, 1304–1311. DOI: https://doi.org/10.5829/idosi.aejaes.2015.15.7.12705.

Shrestha, A., Pradhan, S., Shrestha, J., and Subedi, M. (2019). Role of seed priming in improving seed germination and seedling growth of maize (Zea mays L.) under rain fed condition. Journal of Agriculture and Natural Resources 2, 265–273. DOI: https://doi.org/10.3126/janr. v2i1.26088.

Singhal, R.K., Pandey, S., and Bose, B. (2021). Seed priming with Mg (NO3)2 and ZnSO4 salts triggers physio-biochemical and antioxidant defense to induce water stress adaptation in wheat (Triticum aestivum L.). Plant Stress 2, 1-12. DOI: https://doi.org/10.1016/j. stress.2021.100037.

Sirisuntornlak, N., Ullah, H., Sonjaroon, W., Arirob, W., Anusontpornperm, S., and Datta, A. (2021). Effect of seed priming with silicon on growth, yield and nutrient uptake of maize under water deficit stress. Journal of Plant Nutrition 44, 1869–1885. DOI: https://doi.org/10.1080/019 04167.2021.1884707.

Sonet, J., Mosca, M., Bierla, K., Modzelewska, K., Flis-Borsuk, A., Suchocki, P., Ksiazek, I., Anuszewska, E., Bulteau, A.L., Szpunar, J., Lobinski, R., and Chavatte, L. (2019). Selenized plant oil is an efficient source of selenium for selenoprotein biosynthesis in human cell lines. Nutrients 11, 1-13. DOI: https://doi.org/10.3390/nu11071524.

Song, L., Jin, J., and He, J. (2019). Effects of severe water stress on maize growth processes in the f ield. Sustainability 11, 1-18. DOI: https://doi. org/10.3390/su11185086.

Suo, H.C., Li, W., Wang, K.H., Ashraf, U., Liu, J. H., Hu, J.G., Li, Z.J., Zhang, X.L., Xie, J. and Zheng, J.R. (2017). Plant growth regulators in seed coating agent affect seed germination and seedling growth of sweet corn. Applied Ecology And Environmental Research 15, 829-839. DOI: http://dx.doi.org/10.15666/aeer/1504_829839

Szabó, A., Széles, A., Illés, Á., Bojtor, C., Mousavi, S. M.N., Radócz, L., and Nagy, J. (2022). Effect of different nitrogen supply on maize emergence dynamics, evaluation of yield parameters of different hybrids in long-term f ield experiments. Agronomy 12, 1-13. DOI: https://doi.org/10.3390/agronomy12020284.

Thakur, M., Sharma, P., and Anand, Awaghm. (2019). Seed priming-induced early vigor in crops: an alternate strategy for abiotic stress tolerance. In "Priming and Pretreatment of Seeds and Seedlings: Implication in Plant Stress Tolerance and Enhancing Productivity in Crop Plants". (M. Hasanuzzaman, V. Fotopoulos, eds.), pp. 163-180. Springer.

Ubilava, D., and Abdolrahimi, M. (2019). The El Niño impact on maize yields is amplified in lower income teleconnected countries. Environmental Research Letters 14, 1-14. DOI: https://doi.org/10.1088/1748-9326/ab0cd0.

Waghmare, R.C., and Gadre, R. (2018). Impact of essential micronutrient, Zn, on growth and chlorophyll biosynthesis in young Zea mays seedlings. American Journal of Plant Sciences 9, 1855-1867. DOI: https://doi.org/10.4236/ ajps.2018.99135.

Wang, M., Wang, R., Mur, L.A.J., Ruan, J., Shen, Q., and Guo, S. (2021). Functions of silicon in plant drought stress responses. Horticulture Research 8, 1-113. DOI: https://doi. org/10.1038/s41438-021-00681-1.

Wang, K., Zhang, Z., Sha, X.Q., Yu, P., Li, Y., Zhang, D., Liu, X., He, G., Li, Y., Wang, T., Guo, J., Chen, J., and Li, C. (2023). Identification of a new QTL underlying seminal root number in a maize-teosinte population. Frontiers in Plant Science 14, 1–9. DOI: https://doi.org/10.3389/ fpls.2023.1132017

Waqas, M., Korres, N. E., Khan, M.D., Nizami, A.S., Deeba, F., Ali, I., and Hussain, H. (2019). Advances in the concept and methods of seed priming. In "Priming and Pretreatment of Seeds and Seedlings: Implication in Plant Stress Tolerance and Enhancing Productivity in Crop Plants". (M. Hasanuzzaman, V. Fotopoulos, eds.), pp. 11-41. Springer.

Widajati, E., Murniati, E., Palupi, E.R., Kartika, T., Suhartanto, M.R., and Qadir, A. (2013). "Dasar Ilmu dan Teknologi Benih". pp 89-91. IPB Press.

Yuan, Z., Wang, C., Li, S.P., Li, X., and Tai, F. (2014). Effects of different plant hormones or PEG seed soaking on maize resistance to drought stress. Canadian Journal of Plant Science 94, 1491–1499. DOI: https://doi.org/10.4141/CJPS-2014-110.

Zahedifar, M., and Zohrabi, S. (2016). Germination and seedling characteristics of drought stressed corn seed as influenced by seed priming with potassium nano-chelate and sulfate fertilizers. Acta Agriculturae Slovenica 107, 113–128. DOI: https://doi.org/10.14720/ aas.2016.107.1.12.

Zaib, M., Farooq, U., Adnan, M., Abbas, Z., Haider, K., Khan, N., Abbas, R., Nasir, A.S., Sidra, Muhay Ul-Din, M.F., Farooq, T. and Muhammad, A. (2023). Optimizing water stress in crop plants: implications for sustainable agriculture, current and future prospects. Journal of Environmental & Agricultural Sciences 25, 37-50.

Downloads

Published

2025-10-22

How to Cite

Ikasari, Y. A., Suhartanto, M. R., & Ilyas, S. (2025). Inducing Drought Stress Tolerance during Germination by Micronutrient Seed Priming and Coating of Maize (Zea mays L.). Journal of Tropical Crop Science, 12(03), 492–505. https://doi.org/10.29244/jtcs.12.03.492-505