Genetic Variability, Correlation, and Path Analysis in F2 Population of Sorghum

Authors

DOI:

https://doi.org/10.29244/jtcs.13.01.33-44

Keywords:

crossbreeding, food crops, local variety, sorghum rice, variance

Abstract

Indonesian sorghum (Sorghum bicolor L.) germplasm with the highest genetic diversity can serve as a valuable resource for developing high-yielding cultivars. Therefore, the present research aimed to obtain information on genetic variability in the population and also determine the key traits associated with grain yield using correlation and path analysis in sorghum F2 population. The sorghum parental genotypes 'Demak 4' and 'Soraya 3', and a local high yielding IPB line, NS 19, NS 109, and NS 111, were used in the crosses. The F2 population was evaluated against parental cultivars and four check genotypes. The results showed that 64 individual plants were observed as transgressive segregants. Meanwhile, the number of leaves and plant height were controlled polygenically through additive genes. The traits of panicle diameter, dry panicle weight, and grain weight per panicle possessed the highest genotypic coefficient of variance. The traits dry panicle weight and diameter were significantly positively correlated with grain yield. The considerable positive correlation with dried panicle weight, panicle length, and diameter could be used as selection criteria. The path analysis reported that the observed agronomic traits explained 97.07% of the total variation in grain weight per panicle.

References

Acquaah, G. (2012). Principles of plant genetics and breeding (2nd ed., pp. 768). Wiley-Blackwell, John Wiley & Sons. https://doi.org/10.1002/9781118313718

Akatwijuka, R., Rubaihayo, P. R., & Odong, T. L. (2019). Correlations and path analysis of yield traits in sorghum grown in the Southwestern highlands of Uganda. African Crop Science Journal, 27, 437. https://doi.org/10.4314/acsj.v27i3.8

Akinseye, F. M., Birhanu, B. Z., Ajeigbe, H. A., Diancoumba, M., Sanogo, K., & Tabo, R. (2023). Impacts of fertilization management strategies on improved sorghum varieties in smallholder farming systems in Mali: Differences in productivity and profitability. Heliyon, 9, 14497. https://doi.org/10.1016/j.heliyon.2023.e14497

Amwoma, L., Ebere, R., & Arimi, J. (2023). Glycemic index values of stiff porridge (ugali) prepared from maize, millet, and sorghum flours: Which one for diabetes management?. Advances in Public Health, 2023, Article 6641966. https://doi.org/10.1155/2023/6641966

Belay, N. (2018). Genetic variability, broad-sense heritability, and trait associations among grain yield and yield-related traits in tef [Eragrostis tef ( Zucc .) Trotter ] genotypes. Academic Research Journal of Agricultural Science and Research, 6, 163-167. https://doi.org/10.14662/ARJASR2018.024

Chaudhari, P. R., Tamrakar, N., Singh, L., Tandon, A., Sharma, D., & Prabha, C. R. (2018). Rice nutritional and medicinal properties: a review article. Journal of Pharmacognosy and Phytochemistry, 7, 150–156. Dasriani, Zubaidah, S., & Kuswantoro, H. (2020). Inheritance of morphological characters of soybean leaves, pods, and seeds. AIP Conference Proceedings, 2231, 040004-1–040004-12. https://doi.org/10.1063/5.0002440

de Mendiburu, F. (2021). Agricolae: Statistical Procedures for Agricultural Research. https://cran.r-project.org/web/packages/agricolae/index.html.

dos Reis Gallo, L. R., Reis, C. E. G., Mendonça, M. A., da Silva, V.S.N., Pacheco, M. T. B., & Botelho, R. B. A. (2021). Impact of gluten-free sorghum bread genotypes on glycemic and antioxidant responses in healthy adults. Foods, 10, 1–12. https://doi.org/10.3390/foods10102256

Enyew, M., Feyissa, T., Geleta, M., Tesfaye, K., Hammenhag, C., & Carlsson, A. S. (2021). Genotype by environment interaction, correlation, AMMI, GGE biplot, and cluster analysis for grain yield and other agronomic traits in sorghum (Sorghum bicolor L. Moench). PLoS ONE, 16, 0258211. https://doi.org/10.1371/journal.pone.0258211

Fitrahtunnisa, Mardian, I., & Rahmatullaila. (2020). Performance and utilization of local sorghum (Sorghum bicolor L.) in West Nusa Tenggara. IOP Conference Series: Earth and Environmental Science, 484. https://doi.org/10.1088/1755-1315/484/1/012092

Food and Agriculture Organization. (2022). Crop prospects and food situation – Quarterly global report No. 3, September 2022. https://doi.org/10.4060/cc2300en. https://openknowledge.fao.org

Halim, B., Atmayadi, M. I., & Suwardji, S. (2022). Ntb’s potential as a sorghum producer for alternative food and export commodities. Path of Science, 8, 5012–5019. https://doi.org/10.22178/pos.82-17

Imani, A., Amani, G., Shamili, M., Mousavi, A., Rezai, H., Rasouli, M., & Martínez García, P. J. (2021). Diversity and broad-sense heritability of phenotypic characteristics in almond cultivars and genotypes. International Journal of Horticultural Science and Technology, 9, 281–289. https://doi.org/10.22059/ijhst.2020.284452.303

Jiang, Y., Dong, L., & Li, H. (2024). Genetic linkage map construction and QTL analysis for plant height in Proso millet (Panicum miliaceum L.). Theoretical and Applied Genetics, 137, 78. https://doi.org/10.1007/s00122-024-04576-2

Knight, R. (1979). Practical in statistics and quantitative genetics (pp. 78). Australian Vice Chancellors Committee.

Maftuchah, Febriana, L., Sulistyawati, Reswari, H. A., & Septia, E. D. (2021). Morphological diversity and heritability of nine local sorghum (Sorghum bicolor) genotypes in East Java, Indonesia. Biodiversitas, 22, 1310–1316. https://doi.org/10.13057/biodiv/d220330

Martiwi, I. N. A., Nugroho, L. H., Daryono, B. S., & Susandarini, R. (2020). Morphological variability and taxonomic relationship of Sorghum bicolor (L.) Moench accessions based on qualitative characters. Annual Research & Review in Biology, 35, 40 52. https://doi.org/10.9734/arrb/2020/v35i630234

Maryono, M. Y., Trikoesoemaningtyas, Wirnas, D., & Hoeman, S. (2019). Genetic analysis and transgressive segregant selection of F2 sorgum population derived from B69 x numbu and B69 x kawali crosses. Jurnal Agronomi Indonesia, 47, 163–170. https://doi.org/10.24831/jai.v47i2.24991

Mofokeng, M. A., Shimelis, H., Laing, M., & Shargie, N. (2019). Genetic variability, heritability, and genetic gain for quantitative traits in South African sorghum genotypes. Australian Journal of Crop Science, 13, 1–10. https://doi.org/10.21475/ajcs.19.13.01.p718

Ngidi, A., Shimelis, H., Abady, S., Chaplot, V., & Figlan, S. (2024). Genetic variation and association of yield, yield components, and carbon storage in sorghum (Sorghum bicolor [L.] Moench) genotypes. BMC Genomic Data, 25, 1–14. https://doi.org/10.1186/s12863-024-01256-4

Pezzali, J. G., Suprabha-Raj, A., Siliveru, K., & Aldrich, C. G. (2020). Characterization of white and red sorghum flour and their potential use for the production of extrudate crisps. PLoS ONE, 15, 1–13. https://doi.org/10.1371/journal.pone.0234940

Riyanto, A., Susanti, D., & Haryanto, T. A. D. (2023). Genetic parameters and interrelationship analysis among traits in F2 populations of 'Inpari 31' X 'Basmati Delta 9' Rice Crosses. Journal of Applied Agricultural Research, 23, 94–109. https://doi.org/10.25181/jppt.v23i1.2433

Rooney, L. W., & Serna-Saldivar, S. O. (2000). Sorghum (2nd ed., pp. 149-176). Marcel Dekker.

Saikiran, V., Shivani, D., Ramesh, S., Maheswaramma, S., Sujatha, K., Sravanthi, K., Yamini, K. N., Varaprasad, B. V., & Kumar, C. V. S. (2023). Genetic inheritance of component traits associated with shoot fly resistance in sorghum [Sorghum bicolor (L.) Moench]. Cereal Research Communications, 51, 567–575. https://doi.org/10.1007/s42976-022 00321-x

Samak, N. R. A., Hittalmani, S., Shashidhar, N., & Biradar, H. (2011). Exploratory studies on genetic variability and genetic control for protein and micronutrient content in F4 and F5 generation of rice (Oryza sativa L.). Asian Journal of Plant Sciences, 10, 376–379. https://doi.org/10.3923/ajps.2011.376.379

Sayurandi & Woelan, S. (2016). Estimation of gene action on yield component and latex yield potential characters of some rubber genotypes from crossing of IAN 873 X PN 3760 Parental Clones. Journal of Rubber Research, 34, 141-150. https://doi.org/10.22302/ppk.jpk.v34i2.287

Senbetay, T. (2020). Genetic variability, heritability, genetic advance and trait associations in selected sorghum (Sorghum Bicolor L. Moench) accessions in Ethiopia. Journal of Biology, Agriculture and Healthcare, 10, 1–8. https://doi.org/10.7176/jbah/10-12-01

Singh, R. K., & Chaudary, B. D. (1979). Biometrical methods in quantitaive genetics analysis (pp. 314). Kalyani Publ, New Delhi (IN).

Statistics Indonesia. (2023). Population growth rate 2021-2023. BPS-Statistics Indonesia. https://www.bps.go.id/en/statistics-table/2/MTk3NiMy/laju-pertumbuhanpenduduk.html.

Suguna, M., Aruna, C., Deepika, C., Ratnavathi, C. V., & Tonapi, V. A. (2021). Genetic analysis of semolina recovery and associated traits- A step towards breeding for specific end uses in sorghum (Sorghum bicolor (L.) Moench. Journal of Cereal Science, 100, 103226. https://doi.org/10.1016/j.jcs.2021.103226

Sulistyowati, Y., Sopandie, D., Sinthi, W. A., & Nugroho, S. (2016). Genetic parameters and selection of sorghum [Sorghum bicolor (L.) Moench] F4 populations derived from single seed descent (SSD). Journal of Biology Indonesia, 12, 175–184. https://doi.org/10.14203/jbi.v12i2.2878

Suroya, L. F., Wirnas, D., Trikoesoemaningtyas, & Reflinur. (2023). Identification of waxy genotype in sorghum genetic resources using waxy gene-based markers and iodine staining methods. Australian Journal of Crop Science, 17, 190–197. https://doi.org/10.21475/ajcs.23.17.02.p3784

Taylor, J.R.N., & Duodu K.G. (2018). Sorghum and millets: chemistry, technology and nutritional attributes (pp. 470). Elsevier, Amsterdam.

Trikoesoemaningtyas, Wirnas, D., Saragih, E. L., Rini, E. P., Marwiyah, S., & Sopandie, D. (2017). Genetic control of morphology and agronomic characters in three sorghum (Sorghum bicolor (L.) Moench). Jurnal Agronomi Indonesia, 45, 285-291. https://doi.org/10.2483/jai.v45i3.18387

Tripathi, A. D., Mishra, R., Maurya, K. K., Singh, R. B., & Wilson, D. W. (2019). Estimates for world population and global food availability for global health. In R. B. Singh, R. R. Watson, & T. Takahashi, (Eds.), The role of functional food security in global health (pp. 3-24). Academic Press, Cambridge.

Wirnas, D., Oktanti, N., Rahmi, H. N., Andriani, D., Faturrahman, Rini, E. P., Marwiyah, S., Trikoesoemaningtyas, & Sopandie, D. (2021). Genetic analysis for designing an ideotype of high-yielding sorghum based on the performance of existing lines. Biodiversitas, 22, 5286–5292. https://doi.org/10.13057/biodiv/d221208

Wirnas, D., Trikoesoemaningtyas, Rini, E. P., Marwiyah, S., Sopandie, D., & Nur, A. (2024). Genetic study of amylose content and yield-related traits in sorghum germplasm. SABRAO Journal of Breeding and Genetics, 56, 951–962. https://doi.org/10.54910/sabrao2024.56.3.5

Downloads

Published

2026-02-01

How to Cite

Rahayu, A., Wirnas, D., Trikoesoemaningtyas, T., & Reflinur, R. (2026). Genetic Variability, Correlation, and Path Analysis in F2 Population of Sorghum. Journal of Tropical Crop Science, 13(01), 33–44. https://doi.org/10.29244/jtcs.13.01.33-44