The Potential of Metarhizium anisopliae (Metsch.) Sorokīn as the Biocontrol Agent Against Cacao Pod Borer (Conopomorpha cramerella Snellen)
DOI:
https://doi.org/10.29244/jtcs.13.01.134-147Keywords:
colonization, entomopathogenicity, formulation, mycoinsecticide, symbiosisAbstract
Metarhizium anisopliae (Metsch.) Sorokīn is an entomopathogenic fungus with broad bio insecticidal potential, widely recognized for its role in sustainable pest management. This review examines the taxonomy, pathogenesis, infection symptoms, environmental requirements, host specificity, and dual role as both a biocontrol agent and an endophyte. Special emphasis is placed on its efficacy against the cacao pod borer (Conopomorpha cramerella Snellen), a significant pest in Southeast Asia that causes yield losses exceeding 50% in cacao plantations. Laboratory and semi-field studies report larval mortality rates of up to 80%–90% under controlled conditions. However, field-level efficacy varies due to environmental factors such as temperature, relative humidity, UV exposure, and soil characteristics. The review also discusses formulation strategies, including conidial suspensions and granular formulations, that improve fungal persistence and infection success. Despite promising outcomes, the effectiveness of M. anisopliae is influenced by strain variability, local adaptation, and integration with cultural practices. Understanding these dynamics is crucial for optimizing the application of this approach in integrated pest management (IPM) systems and advancing sustainable cacao production.
References
Adeniyi, D. O., & Asogwa, E. U. (2023). Complexes and diversity of pathogens and insect pests of the cocoa tree. In F. O. Asiegbu & A. Kovalchuk (Eds.), Forest microbiology (pp. 285–311). Academic Press.
Agbessenou, A., Akutse, K. S., Yusuf, A. A., Wekesa, S. W., & Khamis, F. M. (2021). Temperature-dependent modeling and spatial prediction reveal suitable geographical areas for deploying two Metarhizium anisopliae isolates for Tuta absoluta management. Scientific Reports, 11, 23346. https://doi.org/10.1038/s41598-021-02718-w
Ahsan, S. M., Injamum-Ul-Hoque, M., Das, A. K., Rahman, M. M., Mollah, M. M. I., Paul, N. C., & Choi, H. W. (2024). Plant entomopathogenic fungi interaction: Recent progress and prospects on endophytism-mediated growth promotion and biocontrol. Plants, 13, 1420. https://doi.org/10.3390/plants13101420
Alvarez-Romero, P. I., Román-Robalino, D. A., Salazar-Castañeda, E. P., Suárez-Cedillo, S. E., Hinojosa-Sánchez, L. A., Ferreira, A. F. T. A. F. E., & Guallpa-Calva, M. A. (2025). Diversity and composition of endophytic fungal communities associated with cocoa (Theobroma cacao L.) fruits in the Northern Ecuadorian Amazon. International Journal of Plant Biology, 16, 17. https://doi.org/10.3390/ijpb16010017
Amalin, D. M., Arcelo, M., Almarinez, B. J. M., Castillo, R. C., Legaspi, J. C., Santos, K. L. T., & Zhang, A. (2023). Field evaluation of the sex pheromone of the cacao pod borer (Conopomorpha cramerella Snellen) in the Philippines. Frontiers in Agronomy, 5, 1165299. https://doi.org/10.3389/fagro.2023.1165299
Amaresan, N., & Kumar, K. (2025). Compendium of phytopathogenic microbes in agro ecology: Vol. 1 fungi (pp. 1–460). Springer Nature.
Aravinthraju, K., Shanthi, M., Murugan, M., Srinivasan, R., Maxwell, L. A., Manikanda Boopathi, N., & Anandham, R. (2024). Endophytic entomopathogenic fungi: Their role in enhancing plant resistance, managing insect pests, and synergy with management routines. Journal of Fungi, 10, 865. https://doi.org/10.3390/jof10120865
Arias, M., Ninnin, P., Ten Hoopen, M., Alvarado, J., Cabezas Huayllas, O., Valderrama, B., & Bagny Beilhe, L. (2025). The American cocoa pod borer, Carmenta foraseminis, an emerging pest of cocoa: A review. Agricultural and Forest Entomology, 27, 340–356. https://doi.org/10.1111/afe.12676
Arya, G. C., Sarkar, S., Manasherova, E., Aharoni, A., & Cohen, H. (2021). The plant cuticle: An ancient guardian barrier set against long-standing rivals. Frontiers in Plant Science, 12, 663165. https://doi.org/10.3389/fpls.2021.663165
Aryal, S., Katlav, A., House, C. M., Spooner-Hart, R. N., Duncan, M., Nielsen, U. N., Cook, J. M., & Riegler, M. (2025). Virulence and biocontrol potential of entomopathogenic nematodes against soil‐dwelling stages of the small hive beetle under laboratory and semi‐field conditions. Pest Management Science, 81, 4004–4015. https://doi.org/10.1002/ps.8766
Bamisile, B. S., Siddiqui, J. A., Akutse, K. S., Ramos Aguila, L. C., & Xu, Y. (2021). General limitations to the use of endophytic entomopathogenic fungi as plant growth promoters, biocontrol agents for pests and pathogens. Plants, 10, 2119. https://doi.org/10.3390/plants10102119
Baral, B. (2017). Entomopathogenicity and biological attributes of Himalayan treasured fungus Ophiocordyceps sinensis (Yarsagumba). Journal of Fungi, 3, 4. https://doi.org/10.3390/jof3010004
Bashyala, S., Poudela, D., & Gautamb, B. (2022). A review of cultural practice as an effective pest management approach under integrated pest management. Tropical Agroecosystems, 3, 34–40. https://doi.org/10.26480/taec.01.2022.34.40
Behie, S. W., Jones, S. J., & Bidochka, M. J. (2015). Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology, 13, 112–119. https://doi.org/10.1016/j.funeco.2014.08.001
Behie, R., & Birthisel, T. (2023). Formulations of entomopathogens as bioinsecticides. In J. A. Morales-Ramos, G. Rojas, & D. I. Shapiro-Ilan (Eds.), Mass production of beneficial organisms (pp. 407–429). Academic Press.
Ben Lagha, A., Maquera Huacho, P., & Grenier, D. (2021). A cocoa (Theobroma cacao L.) extract impairs the growth, virulence properties, and inflammatory potential of Fusobacterium nucleatum and improves oral epithelial barrier function. PLoS One, 16, e0252029. https://doi.org/10.1371/journal.pone.0252029
Bischoff, J. F., Rehner, S. A., & Humber, R. A. (2009). A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia, 101, 512 530. https://doi.org/10.3852/07-202
Byrne, B. A., & Rankin, S. C. (2021). Laboratory diagnosis of fungal infections. In J. E. Sykes (Ed.), Greene’s infectious diseases of the dog and cat (pp. 31–41). WB Saunders.
Cocuzza, G. M., Goldansaz, S. H., & Harsur, M. (2021). Arthropod pests and their management. In A. M. Dandekar, C. M. R. João, & R. E. Paull (Eds.), The pomegranate: Botany, production and uses (pp. 392–427). CAB International.
de Sousa, T. K., da Silva, A. T., & de Freitas Soares, F. E. (2025). Fungi-based bioproducts: A review in the context of one health. Pathogens, 14, 463. https://doi.org/10.3390/pathogens14050463
Devi, G. (2021). Insect defense system and immunosuppression of entomopathogenic strategies nematodes: An overview. International Journal of Environment, Agriculture and Biotechnology, 6, 69–77. https://dx.doi.org/10.22161/ijeab.63.7
Dos Reis, J. B. A., Lorenzi, A. S., & do Vale, H. M. M. (2022). Methods used for the study of endophytic fungi: A review on methodologies and challenges, and associated tips. Archives of Microbiology, 204, 675. https://doi.org/10.1007/s00203-022-03283-0
Ernawati, D. (2013). Virulence of various isolates of the entomopathogenic fungus Metarhizium spp. against the cocoa pod borer Conopomorpha cramerella Snellen (Lepidoptera: Gracillariidae). Jurnal Hama dan Penyakit Tumbuhan Tropika, 13(2), 151–158. https://doi.org/10.23960/j. hptt.213151-158
Faria, M. R., & Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43, 237–256. https://doi.org/10.1016/j. biocontrol.2007.08.001
Fei, W., & Liu, Y. (2023). Biotrophic fungal pathogens: A critical overview. Applied Biochemistry and Biotechnology, 195, 1–16. https://doi.org/10.1007/s12010-022-04087-0
Hu, S., & Bidochka, M. J. (2021). Root colonization by endophytic insect pathogenic fungi. Journal of Applied Microbiology, 130, 570–581. https://doi.org/10.1111/jam.14503
Jaimes-Suárez, Y. Y., Carvajal-Rivera, A. S., Galvis-Neira, D. A., Carvalho, F. E., & Rojas Molina, J. (2022). Cacao agroforestry systems beyond the stigmas: Biotic and abiotic stress incidence impact. Frontiers in Plant Science, 13, 921469. https://doi.org/10.3389/fpls.2022.921469
Karthi, S., Vasantha-Srinivasan, P., Senthil Nathan, S., Han, Y. S., Shivakumar, M. S., Murali-Baskaran, R. K., & Malafaia, G. (2024). Entomopathogenic fungi promising biocontrol agents for managing lepidopteran pests: Review of current knowledge. Biocatalysis and Agricultural Biotechnology, 58, 103146. https://doi.org/10.1016/j.bcab.2024.103146
Kobmoo, N., Mongkolsamrit, S., Khonsanit, A., J. Cedeño-Sanchez, M., Arnamnart, N., Noisripoom, W., & Luangsa-Ard, J. (2024). Integrative taxonomy of Metarhizium anisopliae species complex, based on phylogenomics combined with morphometrics, metabolomics, and virulence data. IMA Fungus, 15, 30. https://doi.org/10.1186/s43008-024-00154-9
Khan, W. A., & Gang Wang. (2023). Conservation tillage: A sustainable approach for carbon sequestration and soil preservation. A review. Journal of Agriculture Sustainability and Environment, 2, 1–24. https://doi.org/10.56556/jase.v2i1.770
Lopes, M. J. D. S., Dias-Filho, M. B., & Gurgel, E. S. C. (2021). Successful plant growth promoting microbes: Inoculation methods and abiotic factors. Frontiers in Sustainable Food Systems, 5, 606454. https://doi.org/10.3389/fsufs.2021.606454
Lopez, D. C., & Sword, G. A. (2015). The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect the survival of the cotton bollworm (Helicoverpa zea). Biological Control, 89, 53–60. https://doi.org/10.1016/j.biocontrol.2015.03.010
Lv, C., Huang, Y. Z., & Luan, J. B. (2024). Insect microbe symbiosis-based strategies offer a new avenue for the management of insect pests and their transmitted pathogens. Crop Health, 2, 1–11. https://doi.org/10.1007/s44297-024-00038-9
Ma, M., Luo, J., Li, C., Eleftherianos, I., Zhang, W., & Xu, L. (2024). A life-and-death struggle: Interaction of insects with entomopathogenic fungi across various infection stages. Frontiers in Immunology, 14, 1329843. https://doi.org/10.3389/fimmu.2023.1329843
Magfirah, N., Sartiami, D., Niogret, J., & Ekayanti, A. (2025). Biological parameter of cocoa pod borer Conopomorpha cramerella (Lepidoptera: Gracillariidae) under laboratory conditions. IOP Conference Environmental 012020. Series: Earth Science, and 1494, https://doi.org/10.1088/1755-1315/1494/1/012020
Mathur, V., & Ulanova, D. (2023). Microbial metabolites are beneficial to plant hosts across ecosystems. Microbial Ecology, 86, 25–48. https://doi.org/10.1007/s00248-022-02073-x
Meilin, A., Yuliani, N., Cahyaningrum, H., Senewe, R. E., Saidah, Salamba, H. N., Napitupulu, D., Lenin, I., Suneth, R. F., Minsyah, N. I., Handoko, Suparwoto, Endrizal, Saidi, B. B., Jumakir, Waluyo, Yardha, Asaad, M., Edi, S., Yustisia, ... & Bobihoe, J. (2023). The integrated pest management implementation of the cocoa pod borer in Indonesia. In S. O. Agele & O. S. Ibiremo (Eds.), Shifting frontiers of Theobroma cacao-opportunities and challenges for production (pp. 157–172). IntechOpen.
Montecalvo, M. P., & Navasero, M. M. (2021). Comparative virulence of Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metchnikoff) Sorokin to Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Journal of the International Society for Southeast Asian Agricultural Sciences, 27, 15 26. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20210233047
Murindangabo, Y. T., Kopecký, M., Perná, K., Konvalina, P., Bohatá, A., Kavková, M., & Hoang, T. N. (2024). Relevance of entomopathogenic fungi in soil–plant systems. Plant and Soil, 495, 287 310. https://doi.org/10.1007/s11104-023-06325-8
Mwamburi, L. A. (2021). Endophytic fungi, Beauveria bassiana and Metarhizium anisopliae, confer control of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in two tomato varieties. Egyptian Journal of Biological Pest Control, 31, 1–6. https://doi.org/10.1186/s41938-020-00357-3
Nwaokolo, V. M., Jonathan, S. G., Ugwu, J. A., & Eziashi, E. I. (2023). Potential of Beauveria bassiana and Metarhizium anisopliae as biological management agents of Phytolyma fusca (Hemiptera, Psylloidea). Nigeria Agricultural Journal, 54, 336–341. https://www.ajol.info/index.php/naj/article/view/252650
Patalinghug, M. (2022). Status of cacao (Theobroma cacao L.) production on its challenges and prospects in Zamboanga del Norte Province in the Philippines. International Journal Agricultural Technology, 18, 1075–1092. of Pathak, V. M., Verma, V. K., Rawat, B. S., Kaur, B., Babu, N., Sharma, A., & Cunill, J. M. (2022). Current status of pesticide effects on environment, human health, and its eco friendly management as bioremediation: A comprehensive review. Frontiers in Microbiology, 13, 962619. https://doi.org/10.3389/fmicb.2022.962619
Peng, Z. Y., Huang, S. T., Chen, J. T., Li, N., Wei, Y., Nawaz, A., & Deng, S. Q. (2022). An update of a green pesticide: Metarhizium anisopliae. All Life, 15, 1141–1159. https://doi.org/10.1080/26895293.2022.2147224
Prasad, S. (2022). Biotic stresses of major pulse crops and their management strategies. In A. Roy & N. Chowdhury (Eds.), Abiotic and biotic stress management in plants (pp. 31–48). CRC Press.
Purificacion, M., Shah, R. B. M., De Meeûs, T., Bakar, S. B., Savantil, A. B., Yusof, M. M., et al. (2024). Development and characterization of microsatellite markers for population genetics of the cocoa pod borer Conopomorpha cramerella (Snellen) (Lepidoptera: Gracillaridae). PLOS ONE, 19(4), e0297662. https://doi.org/10.1371/journal.pone.0297662
Qiu, L., Zhang, T. S., Song, J. Z., Zhang, J., Li, Z., & Wang, J. J. (2021). BbWor1, a regulator of morphological transition, is involved in conidium-hypha switching, blastospore propagation, and virulence in Beauveria bassiana. Microbiology 9, 10-1128. Spectrum, https://doi.org/10.1128/spectrum.00203-21
Quesada-Moraga, E., González-Mas, N., Yousef-Yousef, M., Garrido-Jurado, I., & Fernández-Bravo, M. (2024). Key role of environmental competence in successful use of entomopathogenic fungi in microbial pest control. Journal of Pest Science, 97, 1–15. https://doi.org/10.1007/s10340-023-01622-8
Rajput, M., Sajid, M. S., Rajput, N. A., George, D. R., Usman, M., Zeeshan, M., & Sparagano, O. A. (2024). Entomopathogenic fungi as alternatives to chemical acaricides: Challenges, opportunities, and prospects for sustainable tick control. Insects, 15, 1017. https://doi.org/10.3390/insects15121017
Rizal, M., Karmawati, E., et al. (2024). A sustainable and ecological approach to integrated cocoa pest management in Indonesia. IOP Conference Series: Earth and Environmental Science, 1346, 012021.
Saminathan, N., Subramanian, J., Sankaran Pagalahalli, S., Theerthagiri, A., & Mariappan, P. (2025). Entomopathogenic fungi: Translating research into field applications for crop protection. Arthropod Plant Interactions, 19, 1–27. https://doi.org/10.1007/s11829-024-10110-4
Sani, I., Jamian, S., Ismail, S. I., Saad, N., Abdullah, S., Hata, E. M., & Jalinas, J. (2023). Effect of temperature on germination, radial growth, and sporulation of the new isolates of Metarhizium anisopliae and their virulence to whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Sains Malaysiana, 52, 467–476. http://doi.org/10.17576/jsm-2023-5202-11
Shah, P. A., & Pell, J. K. (2003). Entomopathogenic fungi as biological control agents. Applied Microbiology and Biotechnology, 61, 413 423. https://doi.org/10.1007/s00253-003-1240-8
Sharma, R., & Sharma, P. (2021). Fungal entomopathogens: A systematic review. Egyptian Journal of Biological Pest Control, 31, 1–13. https://doi.org/10.1186/s41938-021-00404-7
Susila, I. W., Supartha, I. W., & Pu’u, Y. M. S. W. (2011). Efficacy of entomopathogenic fungi against cocoa pod borer, Conopomorpha cramerella (Senellen) (Lepidoptera: Gracillaridae). of Journal ISSAAS [International Society for Southeast Asian Agricultural Sciences] (Philippines), 17(1). http://www.issaas.org
Syazwan, S. A., Lee, S. Y., Sajap, A. S., Lau, W. H., Omar, D., & Mohamed, R. (2021). Interaction between Metarhizium anisopliae and its host, the subterranean termite Coptotermes curvignathus during the infection process. Biology, 10, 263. https://doi.org/10.3390/biology10040263
Thube, S. H., Pandian, R. T. P., Babu, M., Josephrajkumar, A., Mhatre, P. H., Kumar, P. S., & Chavan, S. N. (2022). Evaluation of a native isolate of Metarhizium anisopliae (Metschn.) Sorokin TMBMA1 against tea mosquito bug, Helopeltis theivora infesting cocoa (Theobroma cacao L.). Biological Control, 170, 104909. https://doi.org/10.1016/j.biocontrol.2022.104909
Tong, S. M., & Feng, M. G. (2022). Molecular basis and regulatory mechanisms underlying fungal insecticides’ resistance to solar ultraviolet irradiation. Pest Management Science, 78, 30–42. https://doi.org/10.1002/ps.6600
Vashisht, V., Vashisht, A., Mondal, A. K., Farmaha, J., Alptekin, A., Singh, H., & Kolhe, R. (2023). Genomics for the identification and monitoring of emerging pathogens: Prospects and obstacles. BioMedInformatics, 1145–1177. 3, https://doi.org/10.3390/biomedinformatics3040069
Xu, N., Zhao, Q., Zhang, Z., Zhang, Q., Wang, Y., Qin, G., Ke, M., Qiu, D., Peijnenburg, W. J. G. M., Lu, T., & Qian, H. (2022). Phyllosphere microorganisms: Sources, drivers, and their interactions with plant hosts. Journal of Agricultural and Food Chemistry, 70, 4860–4870. https://doi.org/10.1021/acs.jafc.2c01113
Yapa, A. T., Thambugala, K. M., Samarakoon, M. C., & de Silva, N. (2025). Metarhizium species as bioinsecticides: Potential, progress, applications & future perspectives. New Zealand Journal of Botany, 63, 439 461. https://doi.org/10.1080/002882-5X.2024.2325006
Yousef-Yousef, M., Romero-Conde, A., Quesada-Moraga, E., & Garrido-Jurado, I. (2022). Production of microsclerotia by Metarhizium sp., and factors affecting their survival, germination, and conidial yield. Journal of Fungi, 8, 402. https://doi.org/10.3390/jof8040402
Zhang, Z. Y., Feng, Y., Tong, S. Q., Ding, C. Y., Tao, G., & Han, Y. F. (2023). Morphological and phylogenetic characterisation of two new soil-borne fungal taxa belonging to Clavicipitaceae (Hypocreales, Ascomycota). MycoKeys, 98, 113. https://doi.org/10.3897/mycokeys.98.106240
Zhang, W., Chen, X., Eleftherianos, I., Mohamed, A., Bastin, A., & Keyhani, N. O. (2024). Crosstalk between immunity and behaviour: Insights from entomopathogenic fungi and their insect hosts. FEMS Microbiology Reviews, 48, fuae003. https://doi.org/10.1093/femsre/fuae003
Zhou, Q., Yu, L., Ying, S. H., & Feng, M. G. (2021). Comparative roles of three adhesin genes (adh1–3) in the insect-pathogenic lifecycle of Beauveria bassiana. Applied Microbiology and Biotechnology, 105, 5491–5502. https://doi.org/10.1007/s00253-021-11420-w
Zhou, W., Arcot, Y., Medina, R. F., Bernal, J., Cisneros-Zevallos, L., & Akbulut, M. E. (2024). Integrated pest management: An update on the sustainability approach to crop protection. ACS Omega, 9, 41130–41147. https://doi.org/10.1021/acsomega.4c06628
Zimmermann, G. (2007). Review on the safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, 17, 879–920. https://doi.org/10.1080/09583150701593963
Downloads
Published
How to Cite
Issue
Section
License
All publications by Journal of Tropical Crop Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



