Improvement of Chlorophyll, Antioxidant Properties, and Biomass Yield in Sweet Basil (Ocimum basilicum L.) Using Chitosan at Various Growing Stages
DOI:
https://doi.org/10.29244/jtcs.13.01.114-133Keywords:
flavonoids, phenolics, phytochemicals, physiology, yieldAbstract
Sweet basil (Ocimum basilicum L.) is known for its numerous health-promising antioxidant phytochemicals and is primarily used in nutritive, medicinal, and cosmetic products. Previous attempts to increase the antioxidant content of sweet basil were associated with disadvantages, including ecological problems, reduced biomass yield, and increased cost. Alternatively, the current study aimed to improve selected antioxidants and biomass yield by using chitosan as an organic and cost-effective growth promoter. In this experiment, a total of four different concentrations of chitosan were applied ( 0%, 0.2%, 0.4%, and 0.6% v/v) at two different growing stages: early growth stage (GS1: 45-day-old plant), late growth stage (GS2: 65-day-old plant), and at both growth stages (known as GS3: 45 & 65-day-old plants). Results showed that plants treated with 0.4% chitosan at GS1 reached the highest chlorophyll a (4.33 mg/cm2), chlorophyll b (2.50 mg/cm2), total chlorophyll (6.84 mg/cm2), total leaf area (2234.31 cm2), total dry biomass (22.72 g per plant), total flavonoid content (33.23 mg QUE/g DE) and DPPH inhibition (92.34%) compared to other treatments. Based on the yield and phytochemical content, it is recommended to apply chitosan at 4% on the 45-day-old plant.
References
Aadesariya, M. K., Ram, V. R., & Dave, P. N. (2017). Evaluation of antioxidant activities by use of various extracts from Abutilon pannosum and Grewia tenax in the Kachchh Region. MOJ Food Processing and Technology, 5, 216–230. https://doi.org/10.15406/mojfpt.2017.04.00116
Abdel-Aziz, H. M. M. (2019). Effect of priming with chitosan nanoparticles on germination, seedling growth, and antioxidant enzymes of broad beans. Egyptian Society for Environmental Science Effect, 18, 81–86. https://doi.org/10.21608/cat.2019.28609
Afshar, M., Najafian, S., & Radi, M. (2022). Seasonal variation in the major bioactive compounds: Total phenolic and flavonoid contents, and antioxidant activity of rosemary from Shiraz. Natural Product Research, 36, 4287–4292. https://doi.org/10.1080/14786419.2021.1978998
Al-Harthy, K. M. S. (2019). Growth and physiological responses of banana (Musa spp.) under different levels of salinity and organic fertilizer in the Northern Sultanate of Oman [Doctoral dissertation, Universiti Putra Malaysia]. Universiti Putra Malaysia Institutional Repository.
Alobaidi, S. (2024). Renal health benefits and therapeutic effects of parsley (Petroselinum crispum): A review. Frontiers in Medicine, 11, 1–10. https://doi.org/10.3389/fmed.2024.1494740
Alvarez, M. A. (2014). Plant biotechnology for health: From secondary metabolites to molecular farming. Springer. https://doi.org/10.1007/978-3-319-05771-2
Amitaye, A. N., Elemike, E. E., Akpeji, H. B., Amitaye, E., Hossain, I., Mbonu, J. I., & Aziza, A. E. (2024). Chitosan: A sustainable biobased material for diverse applications. Journal of Environmental Chemical Engineering, 12, 113208. https://doi.org/10.1016/j.jece.2024.113208
Băbeanu, C., Soare, R., Dinu, M., & Păniță, O. (2020). Antioxidant activities and phytochemical compounds on leaf cabbage (Brassica oleracea L. var. Acephala) and Chinese cabbage (Brassica rapa L. var. Chinensis). Horticulture, 64, 339–346.
Bigham Soostani, S., Ranjbar, M., Memarian, A., Mohammadi, M., & Yaghini, Z. (2025). Regulation of APX, SOD, and PAL genes by chitosan under salt stress in rapeseed (Brassica napus L.). BMC Plant Biology, 25(1), 1–16. https://doi.org/10.1186/s12870-025-06815-0
Biswas, A., Ullah, H., Himanshu, S. K., Praseartkul, P., Tisarum, R., Cha-um, S., & Datta, A. (2025). Biostimulant enhances growth, herbage yield, and physio-biochemical characteristics of sweet basil plants under drought stress. Russian Journal of Plant Physiology, 72, 1–16. https://doi.org/10.1134/S1021443724608711
Cao, Y., Yan, R., Sun, M., Guo, J., & Zhang, S. (2025). Effects of exogenous chitosan concentrations on photosynthesis and functional physiological traits of hibiscus under salt stress. BMC Plant Biology, 25, 419. https://doi.org/10.1186/s12870-025-06424-x
Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, M. A. R., Bhowmik, P., Mahmud, N. U., Tanveer, M., & Islam, T. (2020). Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture, 10, 1–30. https://doi.org/10.3390/agriculture10120624
Chintapula, U., Oh, D., Perez, C., Davis, S., & Ko, J. (2024). Anti-cancer bioactivity of sweet basil leaf-derived extracellular vesicles on pancreatic cancer cells. Journal of Extracellular Biology, 3, e142. https://doi.org/10.1002/jex2.142
Choudhary, R. C., Kumaraswamy, R. V., Kumari, S., Sharma, S. S., Pal, A., Raliya, R., Biswas, P., & Saharan, V. (2017). Cu chitosan nanoparticle boosts defense responses and plant growth in maize (Zea mays L.). Scientific Reports, 7, 1–11. https://doi.org/10.1038/s41598-017-08571-0
Coombs, J., Hall, P. O., Long, S. P., & Schlock, J. M. O. (1987). Techniques in bio-productivity and photosynthesis. Pergamon Press. Divya, K., & Jisha, M. S. (2018). Chitosan nanoparticles preparation and applications. Environmental Chemistry Letters, 16, 101–112. https://doi.org/10.1007/s10311-017-0670-y
Dzung, N. A., Khanh, V. T. P., & Dzung, T. T. (2011). Research on the impact of chitosan oligomers on biophysical characteristics, growth, development, and drought resistance of Polymers, coffee. Carbohydrate 84, 751–755. https://doi.org/10.1016/j.carbpol.2010.07.066
Ekinci, M., Shams, M., Turan, M., Ucar, S., Yaprak, E., Yuksel, E. A., Aydin, M., Ilhan, E., Agar G., Ercisli, S., & Yildirim, E. (2024). Chitosan mitigated the adverse effect of Cd by regulating antioxidant activities, hormones, and organic acid contents in pepper (Capsicum annum L.). Heliyon, 10, 1–10. https://doi.org/10.1016/j.heliyon.2024.e36867
El-Amerany, F., Rhazi, M., Balcke, G., Wahbi, S., Meddich, A., Taourirte, M., & Hause, B. (2022). The effect of chitosan on plant physiology, wound response, and fruit quality of tomato. Polymers, 14, 5006. https://doi.org/10.3390/polym14225006
Emami-Bistgani, Z., Siadat, S. A., Bakhshandeh, A., Pirbalouti, A. G., & Hashemi, M. (2017). Morpho-physiological and phytochemical traits of (Thymus daenensis Celak.) in response to deficit irrigation and chitosan application. Acta Physiologiae Plantarum, 39, 1–13. https://doi.org/10.1007/s11738 017-2526-2
Farouk, S., & Amany, A. R. (2012). Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egyptian Journal of Biology, 14, 14–16. https://doi.org/10.4314/ejb.v14i1.2
Fooladi Vanda, G., Shabani, L., & Razavizadeh, R. (2019). Chitosan enhances rosmarinic acid production in shoot cultures of Melissa officinalis L. through the induction of methyl jasmonate. Botanical Studies, 60(1), 26. https://doi.org/10.1186/s40529-019-0274-x
Genwali, G. R., Acharya, P. P., & Rajbhandari, M. (2013). Isolation of gallic acid and estimation of total phenolic content in some medicinal plants and their antioxidant activity. Nepal Journal of Science and Technology, 14, 95–102. https://doi.org/10.3126/njst.v14i1.8928
Ghasemzadeh, A., Ashkani, S., Baghdadi, A., Pazoki, A., Jaafar, H. Z., & Rahmat, A. (2016). Improvement in flavonoids and phenolic acids production and pharmaceutical quality of sweet basil (Ocimum basilicum L.) by ultraviolet-b irradiation. Molecules, 21, 1–15. https://doi.org/10.3390/molecules21091203
Gossa, A. G. (2024). Chemical constituents and health importance of sweet basil (Ocimum basilicum L.): A review. Research Journal of Botany, 19, 21–24. https://doi.org/10.3923/rjb.2024.21.24
Hassnain, M., Basit, A., Alam, M., Ahmad, I., Ullah, I., Alam, N., Ullah, I., Khalid, M. A., Shair, M., & Ain, N. (2020). Efficacy of chitosan on the performance of tomato (Lycopersicon esculentum L.) plant under water stress conditions. Pakistan Journal of Agricultural Research, 33, 27–41. https://doi.org/10.17582/journal.pjar/2020/33.1.27.41
Hussain, I., Ahmad, S., Ullah, I., Basit, A., Ahmad, I., Sajid, M., Alam, M., Khan, S., & Ayaz, S. (2019). Foliar application of chitosan modulates the morphological and biochemical characteristics of tomato. Asian Journal of Agriculture and Biology, 7, 365–372.
Ibrahim, M. M., Danial, N., & El-Bahr, M. K. (2023). Ethanolic extract of sweet basil callus cultures as a source of antioxidant and sun-protective agents. Egyptian Pharmaceutical Journal, 22, 78–86. https://doi.org/10.4103/epj.epj_124_22
Inam, A., Javad, S., Naseer, I., Alam, P., Almutairi, Z. M., Faizan, M., Zauq, S., & Shah, A. A. (2024). Efficacy of chitosan-loaded zinc oxide nanoparticles in alleviating the drastic effects of drought on corn crop. Plant Stress, 14, 100617. https://doi.org/10.1016/j.stress.2024.100617
Izadiyan, P., & Hemmateenejad, B. (2016). Multi response optimization of factors affecting ultrasonic-assisted extraction from Iranian basil using central composite design. Food Chemistry, 190, 864–870. https://doi.org/10.1016/j.foodchem.2015.06.036
Jia, X., Ma, P., Wei, C. I., & Wang, Q. (2024). Chitin and chitosan: Pioneering sustainable substrates for next-generation soilless vertical farming. Trends in Food Science and Technology, 150, 104599. https://doi.org/10.1016/j.tifs.2024.104599
Jiao, J., Gai, Q. Y., Wang, X., Qin, Q. P., Wang, Z. Y., Liu, J., & Fu, Y. J. (2018). Chitosan elicitation of Isatis tinctoria L. hairy root cultures for enhancing flavonoid productivity and gene expression, and related antioxidant activity. Industrial Crops and Products, 124, 28–35. https://doi.org/10.1016/j.indcrop.2018.07.056
Kahromi, S., & Khara, J. (2021). Chitosan stimulates secondary metabolite production and nutrient uptake in medicinal plant Dracocephalum kotschyi. Journal of the Science of Food and Agriculture, 101, 3898–3907. https://doi.org/10.1002/jsfa.11030
Karamchandani, B. M., Dalvi, S. G., Bagayatkar, M., Banat, I. M., & Satpute, S. K. (2024). Prospective applications of chitosan and chitosan-based nanoparticles formulations in sustainable agricultural practices. Biocatalysis and Agricultural Biotechnology, 58, 103210. https://doi.org/10.1016/j.bcab.2024.103210
Khan, M. J., Sakhi, S., Azam, N., Ahmad, Z., Hadayat, N., Ahmad, B., Hussain, F., Shuaib, M., Khan, S., Hussain, F., Tahir, A. Q., Ali, B., Mahmood, M. T., & Gaafar, A. R. Z. (2024). Effect of chitosan and gibberellic acid on fruit yield and production of peach (Prunus persica L.). Polish Journal of Environmental Studies, 33, 721–726. https://doi.org/10.15244/pjoes/171982
Koca, N., & Karaman, Ş. (2015). The effects of plant growth regulators and L-phenylalanine on phenolic compounds of sweet basil. Food Chemistry, 166, 515–521. https://doi.org/10.1016/j.foodchem.2014.06.065
Kocaman, B. (2024). Effects of foliar application of chitosan on some vegetative growth and biochemical parameters of strawberry under salt stress. Indian Journal of Pharmaceutical Education and Research, 58, s1242–s1249. https://doi.org/10.5530/ijper.58.4s.149
Krishnakripa, P. K., & Thoppil, J. E. (2025). Beyond a pigment—A review on the beneficial aspects of anthocyanins, chlorophylls, carotenoids, and betalains. Vegetos, 1–11. https://doi.org/10.1007/s42535-025-01166-5
Krupa-Małkiewicz, M., & Fornal, N. (2018). Application of chitosan in vitro to minimize the adverse effects of salinity in Petunia × atkinsiana D. Don. Journal of Ecological Engineering, 19, 143–149. https://doi.org/10.12911/22998993/79410
Lai, Q. X., Bao, Z. Y., Zhu, Z. J., Qian, Q. Q., & Mao, B. Z. (2007). Effects of osmotic stress on antioxidant enzyme activities in leaf discs of PSAG12-IPT modified gerbera. Journal of Zhejiang University Science B, 8, 458–464. https://doi.org/10.1631/jzus.2007.B0458
Landi, L., Feliziani, E., & Romanazzi, G. (2014). Expression of defense genes in strawberry fruits treated with different resistance inducers. Journal of Agricultural and Food Chemistry, 62, 3047–3056. https://doi.org/10.1021/jf404423x
Li, Y., Cui, Y., Hu, X., Liao, X., & Zhang, Y. (2019). Chlorophyll supplementation in early life prevents diet‐induced obesity and modulates gut microbiota in mice. Molecular Nutrition & Food Research, 63(21), 1801219. https://doi.org/10.1002/mnfr.201801219
Liu, Z., Liu, T., Liang, L., Li, Z., Hassan, M. J., Peng, Y., & Wang, D. (2020). Enhanced photosynthesis, carbohydrates, and energy metabolism associated with chitosan‐induced drought tolerance in creeping bentgrass. Crop Science, 2020, 1064–1076. https://doi.org/10.1002/csc2.20026
Mahboub, H. H., Eltanahy, A., Omran, A., Mansour, A. T., Safhi, F. A., Alwutayd, K. M., Khamis, T., Husseiny, W. A., Ismail, S. H., Yousefi, M., & Rahman, A. N. A. (2024). Chitosan nanogel aqueous treatment improved blood biochemicals, antioxidant capacity, immune response, immune related gene expression, and infection resistance of Nile tilapia. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 269, 110876. https://doi.org/10.1016/j.cbpb.2023.110876
Malerba, M., & Cerana, R. (2016). Chitosan effects on plant systems. International Journal of Molecular Sciences, 17, 1–15. https://doi.org/10.3390/ijms17070996
Malerba, M., & Cerana, R. (2018). Recent advances in chitosan applications in plants. Polymers, 10, 1–10. https://doi.org/10.3390/polym10020118
Martel, J., Ojcius, D. M., Chang, C. J., Lin, C. S., Lu, C. C., Ko, Y. F., Tseng, S. F., Lai, H. C., & Young, J. D. (2017). Anti obesogenic and antidiabetic effects of plants and mushrooms. Nature Reviews Endocrinology, 13, 149–160. https://doi.org/10.1038/nrendo.2016.142
Mith, H., Yayi-Ladékan, E., Sika-Kpoviessi, S. D., Yaou-Bokossa, I., Moudachirou, M., Daube, G., & Clinquart, A. (2016). Chemical composition and antimicrobial activity of essential oils of Ocimum basilicum, Ocimum canum, and Ocimum gratissimum in function of harvesting time. Journal of Essential Oil Bearing Plants, 19, 1413–1425. https://doi.org/10.1080/0972060X.2014.890076
Mondal, M. M. A., Malek, M. A., Puteh, A. B., & Ismail, M. R. (2013). Foliar application of chitosan on growth and yield attributes of mungbean (Vigna radiata L.) Wilczek. Bangladesh Journal of Botany, 42, 179–183. https://doi.org/10.3329/bjb.v42i1.15910
Mondal, M. M. A., Rana, M. I. K., Dafader, N. C., & Haque, M. E. (2011). Effect of foliar application of chitosan on growth and yield in Indian spinach. Journal of Agroforestry and Environment, 5, 99–102.
Mondal, M. M., Malek, M. A., Puteh, A. B., Ismail, M. R., Ashrafuzzaman, M., & Naher, L. (2012). Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science, 6, 918–921.
Mondal, M., Puteh, A. B., & Dafader, N. C. (2016). Foliar application of chitosan improved morphophysiological attributes and yield in summer tomato (Solanum lycopersicum). Pakistan Journal of Agricultural Sciences, 53, 339–344. https://doi.org/10.21162/PAKJAS/16.2011
Muley, A. B., Shingote, P. R., Patil, A. P., Dalvi, S. G., & Suprasanna, P. (2019). Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydrate Polymers, 210, 289–301. https://doi.org/10.1016/j.carbpol.2019.01.056
Oyeniran, O. H., Courage, F. D., Ademiluyi, A. O., & Oboh, G. (2024). Sweet basil (Ocimum basilicum) leaf and seed extracts alleviate neuronal dysfunction in aluminum chloride induced neurotoxicity in Drosophila melanogaster Meigen model. Drug and Chemical Toxicology, 47, 949–959. https://doi.org/10.1080/01480545.2024.2317828
Pourbeyrami-Hir, Y., Adham, R., Chamani, E., Maleki-Lajayer, H., & Hasanzadeh, M. (2022). Effect of chitosan on morpho physiological traits and regeneration of Iris pseudacorus plantlets under in vitro conditions. Journal of Plant Physiology and Breeding, 12, 71–83. https://doi.org/10.22034/jppb.2022.16255
Putri, V. S., Hadi, V., Nuryani, A. D., & Ambarwati, A. (2024). Effect of cocamidopropyl betaine (CAPB) concentration on the physical characteristics of basil leaves (Ocimum basilicum L.) essential oil facial. Medical Sains: Jurnal Ilmiah Kefarmasian, 9, 477 486. https://doi.org/10.37874/ms.v9i2.1115
Qiu, H., Su, L., Wang, H., & Zhang, Z. (2021). Chitosan elicitation of saponin accumulation in Psammosilene tunicoides hairy roots by modulating antioxidant activity, nitric oxide production, and differential gene expression. Plant Physiology and Biochemistry, 166, 115–127. https://doi.org/10.1016/j.plaphy.2021.05.033
Rahman, A., Ahammed, R., Roy, J., Mia, M. L., Kader, M. A., Khan, M. A., Rashid, M. H., Sarker, U. K., Uddin, M. R., & Islam, M. S. (2025). Investigating the impact of oligo chitosan on the growth dynamics and yield traits of Oryza sativa L. ‘BRRI dhan29’ under subtropical conditions. Heliyon, 11, 1–17. https://doi.org/10.1016/j.heliyon.2024.e41552
Reis, C. O., Magalhães, P. C., Avila, R. G., Almeida, L. G., Rabelo, V. M., Carvalho, D. T., Cabral, D. F., Karam, D., & de Souza, T. C. (2019). Action of N-Succinyl and N, O-Dicarboxymethyl chitosan derivatives on chlorophyll photosynthesis and fluorescence in drought-sensitive maize. Journal of Plant Growth Regulation, 38, 619–630. https://doi.org/10.1007/s00344-018-9877-9
Richardson, A. D., Duigan, S. P., & Berlyn, G. P. (2002). An evaluation of non-invasive methods to estimate foliar chlorophyll content. New Phytologist, 153, 185 194. https://doi.org/10.1046/j.0028-646X.2001.00289.x
Saadat, H., Sedghi, M., Seyed Sharifi, R., & Farzaneh, S. (2023). Expression of gibberellin synthesis genes and antioxidant capacity in common bean (Phaseolus vulgaris L. cv. Sadri) seeds induced by chitosan under salinity. Iranian Journal of Plant Physiology, 13, 4715–4728.
Safahani, A. (2020). Alleviatory activities of salicylic acid and chitosan in burdock plant (Arctium lappa L.) under drought stress. Journal of Plant Environmental Physiology, 14, 39–56.
Schmitzer, V., Sircelj, H., Stampar, F., & Slatnar, A. (2021). Physico-chemical characterization of Cornus kousa Burg. fruit: Determining optimal maturity for fresh consumption. Journal of the Science of Food and Agriculture, 101, 778 785. https://doi.org/10.1002/jsfa.10689
Shams Peykani, L., & Farzami Sepehr, M. (2018). Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress conditions. Iranian Journal of Plant Physiology, 9(1), 2661–2670.
Sharma, G., Kumar, A., Devi, K. A., Prajapati, D., Bhagat, D., Pal, A., Raliya, R., Biswas, P., & Saharan, V. (2020). Chitosan nanofertilizer to foster source activity in maize. International Journal of Biological Macromolecules, 145, 226–234. https://doi.org/10.1016/j.ijbiomac.2019.12.155
Silva-Ferreira, V., & Sant’Anna, C. (2017). Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology, 33, 1–8. https://doi.org/10.1007/s11274-016-2181-6
Spence, C. (2024). Sweet basil: An increasingly popular culinary herb. International Journal of Gastronomy and Food Science, 36, 100927. https://doi.org/10.1016/j.ijgfs.2024.100927
Sprangers, K., Thys, S., van Dusschoten, D., & Beemster, G. T. (2020). Gibberellin enhances the anisotropy of cell expansion in the growth zone of the maize leaf. Frontiers in Plant Science, 11, 1–13. https://doi.org/10.3389/fpls.2020.01163
Stasińska-Jakubas, (2023). M., Hawrylak Nowak, B., Wójciak, M., & Dresler, S. Comparative effects of two forms of chitosan on selected phytochemical properties of Plectranthus amboinicus (Lour.). 28, 1–16. Molecules, https://doi.org/10.3390/molecules28010376
Stȕtzel, H., & Hanafy, M. S. (2020). Impact of chitosan on shoot regeneration from faba bean embryo axes through its effect on phenolic compounds and endogenous hormones. Plant Archives, 20, 2269–2279.
Subramoniam, A., Asha, V. V., Nair, S. A., Sasidharan, S. P., Sureshkumar, P. K., Rajendran, K. N., Karuagaran, D., & Ramalingam, K. (2012). Chlorophyll revisited: Anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-α gene by the same. Inflammation, 35(3), 959–966. https://doi.org/10.1007/s10753-011-9399-0
Sun, D., Wu, S., Li, X., Ge, B., Zhou, C., Yan, X., Ruan, R., & Cheng, P. (2024). The structure, functions, and potential medicinal effects of chlorophylls derived from microalgae. Marine Drugs, 22, 2–18. https://doi.org/10.3390/md22020065
Tanaka, A., & Ito, H. (2025). Chlorophyll degradation and its physiological function. Plant and Cell Physiology, 66, 139–152. https://doi.org/10.1093/pcp/pcae093
Turan, V. (2019). Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant, plus improved the soil enzymatic activities, antioxidant defense system, and nutritional quality of lettuce. Ecotoxicology and Environmental Safety, 183, 1–13. https://doi.org/10.1016/j.ecoenv.2019.109594
Uchendu, A. P., Omogbai, E. K., Obarisiagbon, P. A., Omogiade, U. G., & Bafor, E. E. (2024). Chlorophyll derivatives exert greater potency over progesterone in the prevention of infection‐induced preterm birth in murine models. American Journal of Reproductive Immunology, 92, e70000. https://doi.org/10.1111/aji.70000
Ullah, N., Basit, A., Ahmad, I., Ullah, I., Shah, S. T., Mohamed, H. I., & Javed, S. (2020). Mitigation of the adverse effect of salinity stress on the performance of the tomato crop by exogenous application of chitosan. Bulletin of the National Research Centre, 44, 1–11. https://doi.org/10.1186/s42269-020-00435-4
Van, S. N., Minh, H. D., & Anh, D. N. (2013). Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee and in greenhouse. Biocatalysis Agricultural 289–294. Biotechnology, 2, https://doi.org/10.1016/j.bcab.2013.06.001
Vishnu, V., Nair, D. S., Manju, R. V., Sonia, N. S., Sindura, K. P., Rahul, A., & Akilan, L. K. (2025). Chitosan foliar spray enhances photosynthetic performance in drought stressed Piper longum plants. Journal of Applied Horticulture, 27, 75–81. https://doi.org/10.37855/jah.2025.v27i01.15
Vosoughi, N., Gomarian, M., Pirbalouti, A. G., Khaghani, S., & Malekpoor, F. (2018). Essential oil composition and total phenolic, f lavonoid contents, and antioxidant activity of sage (Salvia officinalis L.) extract under chitosan application and irrigation frequencies. Industrial Crops and Products, 117, 366–374. https://doi.org/10.1016/j.indcrop.2018.03.021
Xu, C., & Mou, B. (2018). Chitosan as a soil amendment affects lettuce growth, photochemical efficiency, and gas exchange. HortTechnology, 28, 476–480. https://doi.org/10.21273/HORTTECH04032-18
Xu, D., Li, H., Lin, L., Liao, M. A., Deng, Q., Wang, J., Lv, X., Deng, H., Liang, D., & Xia, H. (2020). Effects of carboxymethyl chitosan on the growth and nutrient uptake in Prunus davidiana seedlings. Physiology and Molecular Biology of Plants, 26, 661 668. https://doi.org/10.1007/s12298-020-00791-5
Yaldiz, G., Camlica, M., Pradhan, Y., & Ali, A. (2022). Chemical characterization, biological activities, and some medicinal uses of different sweet basil (Ocimum basilicum L.) genotypes. In K. Arunachalam, X. Yang, S.P. Sasudharam (Eds), Natural product experiments in drug discovery (pp. 41– 61). Springer Protocol. https://doi.org/10.1007/978-1-0716-2683-2_3
Yolcu, M. S., & Yilmaz, A. (2025). Biostimulant driven enhancement of bioactive compounds in salt-stressed sweet basil (Ocimum basilicum L.). South African Journal of Botany, 178, 318–329. https://doi.org/10.1016/j.sajb.2025.01.037
Younas, N., Akram, A., Younis, A., Hassan, A., & Akbar, A. F. (2024). Ocimum basilicum, A comprehensive exploration of basil: a review. Biological Times, 3, 43–44. https://biologicaltimes.com/
Zhang, Y., Li, Z., Li, Y. P., Zhang, X. Q., Ma, X., Huang, L. K., Yan, Y. H., & Peng, Y. (2018). Chitosan and spermine enhance drought resistance in white clover, associated with changes in endogenous phytohormones and polyamines, and antioxidant metabolism. Functional Plant Biology, 45, 1205–1222. https://doi.org/10.1071/FP18012
Downloads
Published
How to Cite
Issue
Section
License
All publications by Journal of Tropical Crop Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



