Cryopreservation of Terap (Artocarpus elasticus Reinw. ex. Blume) Seeds: Viability and Structural Characterization

Authors

DOI:

https://doi.org/10.29244/jtcs.13.01.199-211

Keywords:

germination test, loading, tetrazolium test, vitrification

Abstract

Terap (Artocarpus elasticus Reinw. ex Blume) is an underutilized fruit tree native to Indonesia, valued both for its edible fruit and its diverse applications in traditional medicine. Terap seeds are recalcitrant, so cryopreservation is the most effective method for their long-term preservation. This study aimed to determine the optimal loading and vitrification times for cryopreservation to maintain seed viability. A factorial, completely randomized design was employed with two factors: loading time (0 and 20 min) and vitrification time (0, 30, and 60 min). Seed viability after loading and vitrification treatment with or without freezing in liquid nitrogen was evaluated using tetrazolium chloride (TTZ) and germination tests. Results indicated that the loading and vitrification treatments did not yet improve the viability of terap seeds after cryopreservation, as determined by the TTZ and germination tests. The TTZ test showed that the viability of all treated seeds decreased, regardless of whether they were frozen in liquid nitrogen. Germination tests revealed that all treated seeds without freezing had reduced germination, while none of the seeds treated with freezing germinated. Structural analysis indicated that freezing alters cell degradation, likely due to the formation of ice crystals and mechanical stress. To improve the success of terap seed cryopreservation, future efforts should focus on optimizing exposure times, reducing PVS2 toxicity, and enhancing cryoprotectant penetration by removing the seed coat or using the embryo axis as an explant.

Author Biography

Fitri Fatma Wardani, Plant Breeding and Biotechnology Program Study, Graduate School, IPB University, Indonesia

Research Center for Applied Botany - National Research and Innovation Agency, Indonesia

References

Adu-Gyamfi, R., & Wetten, A. (2012). Cryopreservation of cocoa (Theobroma cacao L.) somatic embryos by vitrification. CryoLetters, 33, 494–505.

Ali, A. S. & Elozeiri, A. A. (2017). Metabolic processes during seed germination. In J.C. Jimenez-Lopes (Ed.), Advances in Seed Biology (pp. 141–166). IntechOpen.

Aziz, Z. A., Ahmad, M., Chin, L. W. C., Repin, R., Limbawan, S., Maidin, R., & Murdad, R. (2023). Cryopreservation of the North Borneo Phalaenopsis gigantea J.J.Sm. using a vitrification approach. Journal of Tropical Biology and Conservation, 20, 121–134. https://doi.org/10.51200/jtbc.v20i.4651

Bailly, C. (2021). Anticancer mechanism of artonin E and related prenylated flavonoids from the medicinal plant Artocarpus elasticus. Asian Journal of Natural Product Biochemistry, 19, 45–57. https://doi.org/10.13057/biofar/f190202

Benelli, C. (2021). Plant cryopreservation: A look at the present and the future. Plants, 10, 2744. https://doi.org/10.3390/plants10122744

Best, B. P. (2015). Cryoprotectant toxicity: Facts, issues, and questions. Rejuvenation Research, 18, 422–436. https://doi.org/10.1089/rej.2014.1656

Bettoni, J. C., Bonnart, R., & Volk, G. M. (2021). Challenges in implementing plant shoot tip cryopreservation technologies. Plant Cell, Tissue and Organ Culture, 144, 21 34. https://doi.org/10.1007/s11240-020-01846-x

Chandel, K. P. S., Chaudhury, R., Radhamani, J., & Malik, S. K. (1995). Desiccation and freezing sensitivity in recalcitrant seeds of tea, cocoa, and jackfruit. Annals of Botany, 76, 443–450. https://doi.org/10.1006/anbo.1995.1118

da Silva Cordeiro, L., Collin, M., Callado, C.H., Simoes-Gurgel, C., Albarello, N., & Engelmann, F. (2020). Long term conservation of Tarenaya rosea (Cleomaceae) root cultures: Histological and histochemical analyses during cryopreservation using the encapsulation vitrification technique. Protoplasma, 257, 1021–1033. https://doi.org/10.1007/s00709-020-01486-0

de Araújo, D. S., da Luz, P. B., Neves, L. G., & de Paiva Sobrinho, S. (2016). Seed cryopreservation of Passiflora species. Journal of Seed Science, 38, 248–253. https://doi.org/10.1590/2317-1545v38n3154922

Dussert, S., Chabrillange, N., Rocquelin, G., Engelmann, F., Lopez, M., & Hamon, S. (2001). Tolerance of coffee (Coffea spp.) seeds to ultra-low temperature exposure in relation to calorimetric properties of tissue water, lipid composition, and cooling procedure. Physiologia Plantarum, 112, 495–504. https://doi.org/10.1034/j.1399-3054.2001.1120406.x

Faltus, M., Bilavcik, A., & Zamecnik, J. (2021). Vitrification ability of combined and single cryoprotective agents. Plants, 10, 2392. https://doi.org/10.3390/plants10112392

Fraga, H. P. F., Vieira, L. N., Puttkammer, C. C., da Silva, J. M., dos Anjos, K. G., Oliveira, E. M., & Guerra, M. P. (2016). High efficiency cryopreservation of Araucaria angustifolia (Bertol.) Kuntze embryogenic cultures: Ultrastructural characterization and morpho-physiological features. Plant Cell Tissue Organ Culture, 124, 307 318. https://doi.org/10.1007/s11240-015-0895-z

Franca-Neto, J. de B., & Krzyzanowski, F. C. (2022). Use of the tetrazolium test for estimating the physiological quality of seeds. Seed Science and Technology, 50, 31–44. https://doi.org/10.15258/sst.2022.50.1.s.03

Gasparin, E., Faria, J. M., José, A. C., & Hilhorst, H. W. (2017). Physiological and ultrastructural responses during drying of recalcitrant seeds of Araucaria angustifolia. Seed Science and Technology, 45, 112-129. DOI: https://doi.org/10.15258/sst.2017.45.1.01

He, H., Gao, H., Gu, W., & Huang, Y. (2024). Changes in water dynamics and vigor of recalcitrant Phoebe chekiangensis seeds during desiccation by nuclear magnetic resonance and transmission electron microscopy. Forests, 15, 1508. https://doi.org/10.3390/f15091508

Hervani, D. (2019). Penyimpanan plasma nutfah papaya sukma (Carica papaya L. cv. Sukma) secara kriopreservasi [Doctoral dissertation, IPB University]. IPB University Scientific Repository. Hor, Y. L., Kim, Y. J., Ugap, A., Chabrillange, N., Sinniah, U. R., Engelmann, F., & Dussert, S. (2005). Optimal hydration status for cryopreservation of intermediate oily seeds: Citrus as a case study. Annals of Botany, 95, 1153–1161. https://doi.org/10.1093/aob/mci126

Ibrahim, S., & Normah, M. N. (2013). The survival of in vitro shoot tips of Garcinia mangostana L. after cryopreservation by vitrification. Plant Growth Regulation, 70, 237–246. https://doi.org/10.1007/s10725-013-9795-6

Krishnapillay, D. B. the (1989). Towards development of a protocol for cryopreservation of embryos of a recalcitrant seed (Artocarpus heterophyllus Lamk.) [Doctoral dissertation, Universiti Pertanian Malaysia]. Universiti Putra Malaysia Institutional Repository.

Lah, N. H. C., El Enshasy, H. A., Mediani, A., Azizan, K. A., Aizat, W. M., Tan, J. K., Afzan, A., Noor, N. M., & Rohani, E. R. (2023). An insight into the behaviour of recalcitrant seeds by understanding their molecular changes upon desiccation and low temperature. Agronomy, 13, 2099. https://doi.org/10.3390/agronomy13082099

Nagel, M., Pence, V., Balesteros, D., Lambardi, M., Popova, E., & Panis, B. (2024). Plant cryopreservation: Principles, applications, and challenges of banking plant diversity at ultralow temperatures. The Annual Review of Plant Biology, 75, 797–824. https://doi.org/10.1146/annurev-arplant-070623-103551

Ntuli, T. M., Berjak, P., & Pammenter, N. W. (2015). Different assessments of the effect of drying rates on recalcitrant seed material. American Journal of Biology and Life Sciences, 3, 75–79.

O’Brien, C., Folgado, R., Hayward, A., Lahmeyer, S., Folsom, J., & Mitter, N. (2020). Cryopreservation for tree species with recalcitrant seeds: The avocado case. Preprints. https://doi.org/10.20944/preprints202012.0304.v1

Okunade, O. A. (2018). Establishment of shoot multiplication system and cryopreservation of jackfruit (Artocarpus heterophyllus Lamk.) shoot tips. [Doctoral dissertation, Universiti Putra Malaysia]. Universiti Putra Malaysia Institutional Repository.

Padilla, G., Moon, P., Perea, I., & Litz, R. E. (2009). Cryopreservation of embryogenic cultures of “Brewster” litchi (Litchi chinensis Sonn.) and its effect on hyperhydric embryogenic cultures. CryoLetters, 30, 55–63.

Pettinelli, J. de A., Soares, B. de O., Collin, M., Mansur, E. A., & Gagliardi, R. F. (2020). Cryotolerance of somatic embryos of guinea (Petiveria alliacea) to V-cryoplatetechnique and histological analysis of their structural integrity. Acta Physiologiae Plantarum, 42, 40–50. https://doi.org/10.1007/s11738-019-3003-x

Popova, E., Kulichenko, I., & Kim, H.-H. (2023). Critical role of regrowth conditions in post-cryopreservation of in vitro plant germplasm. Biology, 12, 1–35. https://doi.org/10.1007/s11240-020-01859-6

Popova, E., Shukla, M., Kim H.-H., & Saxena, P.K. (2021). Root cryobanking: An important tool in plant cryopreservation. Plant Cell, Tissue and Organ Culture, 144, 49–66. https://doi.org/10.1007/s11240-020-01859-6

Popova, E., Shukla, M., Kim, H.-H., & Saxena, P. K. (2015). Plant cryopreservation for biotechnology and breeding. In J.M. Al Khayri, S.M. Jain, & D.V. Johnson (Eds.), Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools (pp. 63–93). Springer International Publishing.

Pradhan, N., Fan, X., Martini, F., Chen, H., Liu, H., Gao, J., & Goodale, U. M. (2022). Seed viability testing for research and conservation of epiphytic and terrestrial orchids. Botanical Studies, 63, 1–14. https://doi.org/10.1186/s40529-022-00333-0

Roque-Borda, C. A., Kulus, D., de Souza, A. V., Kaviani, B., & Vicente, E. F. (2021). Cryopreservation of agronomic plant germplasm using vitrification-based methods: An overview of selected case studies. International Journal of Molecular Sciences, 22. https://doi.org/10.3390/ijms22116157

Sakai, A., Kobayashi, S., & Oiyama, I. (1991). Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb.) by a simple freezing method. Plant Science, 74, 243–248. https://doi.org/10.1016/0168-9452(91)90052-A

Smýkal, P., Vernoud, V., Blair, M. W., Soukup, A., & Thompson, R. D. (2014). The role of the testa during development and in establishment of dormancy of the legume seed. Frontiers in Plant Science, 5, 1–19. https://doi.org/10.3389/fpls.2014.00351

Streczynski, R., Clark, H., Whelehan, L. M., Ang, S. T., Hardstaff, L. K., Funnekotter, B., Bunn, E., Offord, C. A., Sommerville, K. D., & Mancera, R. L. (2019). Current issues in plant cryopreservation and importance for ex situ conservation of threatened Australian native species. Australian Journal of Botany, 67, 1–15. https://doi.org/10.1071/BT18147

Suranthran, P., Gantait, S., & Sinniah, U. R. (2023). Water content significantly influ ences post-cryopreservation survival of air-desiccated oil palm (Elaeis guineen sis Jacq.) zygotic embryos: A thermal and ultrastructural study. Industrial Crops and Products, 204, 117–343. https://doi.org/10.1016/j.indcrop.2023.117343

Tabi, K. M., Ebongue, G. F. N., Ntsomboh, G. N., & Youmbi, E. (2017). Effect of dry heat treatment along with some dormancy breaking chemicals on oil palm seed germination. South African of Botany, 112, 489–493. Journal https://doi.org/10.1016/j.sajb.2017.06.023

Thammasiri, K. (1999). Cryopreservation of embryonic axes of jackfruit. CryoLetters, 20, 21–28.

Wardani, F. F., Efendi, D., Dinarti, D., & Witono, J. R. (2019). Cryopreservation of papaya seeds cv. 'Sukma', 'Callina', and 'Caliso': Effect of loading treatment and immersion time in plant vitrification solution-2. Nusantara Bioscience, 11, 71–78. https://doi.org/10.13057/nusbiosci/n110112

Wardani, F. F., Efendi, D., Purwoko, B. S., Suhartanto, M. R., & Latifah, D. (2024). Physiological maturity and critical moisture content of terap (Artocarpus elasticus Reinw. ex Blume) for effective seed banking. Sabrao Journal of Breeding and Genetics, 56, 1095–1109. https://doi.org/10.54910/sabrao2024.56.3.17

Whaley, D., Damyar, K., Witek, R. P., Mendoza, A., Alexander, M., & Lakey, J. R. T. (2021). Cryopreservation: An overview of principles and cell-specific considerations. Cell Transplantation, 30, 1–12. https://doi.org/10.1177/0963689721999617

Wikantyoso, B., Imai, T., Himmi, S. K., Yusuf, S., Hata, T., & Yoshimura, T. (2022). Ultrastructure and distribution of sensory receptors on the nonolfactory organs of the soldier caste in subterranean termite (Coptotermes spp.). Arthropododa Structure and Development, 70, 101201. https://doi.org/10.1016/j.asd.2022.101201

Wong, L. Y. (2001). Vitrification of excised embryos of jackfruit (Artocarpus heterophyllus Lamk) [Master’s thesis, Universiti Putra Malaysia]. Universiti Putra Malaysia Institutional Repository.

Zamecnik, J., Faltus, M., & Bilavcik, A. (2021). Vitrification solutions for plant cryopreservation: Modification and properties. Plants, 10, 2623. https://doi.org/10.3390/plants10122623

Downloads

Published

2026-02-13

How to Cite

Wardani, F. F., Efendi, D., Suhartanto, M. R., Purwoko, B. S., & Latifah, D. (2026). Cryopreservation of Terap (Artocarpus elasticus Reinw. ex. Blume) Seeds: Viability and Structural Characterization. Journal of Tropical Crop Science, 13(01), 199–211. https://doi.org/10.29244/jtcs.13.01.199-211